Duibonduil's picture
Upload 4 files
72449a2 verified

A newer version of the Gradio SDK is available: 5.35.0

Upgrade

Agents - गाइडेड टूर

[[open-in-colab]]

इस गाइडेड विजिट में, आप सीखेंगे कि एक एजेंट कैसे बनाएं, इसे कैसे चलाएं, और अपने यूज-केस के लिए बेहतर काम करने के लिए इसे कैसे कस्टमाइज़ करें।

अपना Agent बनाना

एक मिनिमल एजेंट को इनिशियलाइज़ करने के लिए, आपको कम से कम इन दो आर्ग्यूमेंट्स की आवश्यकता है:

  • model, आपके एजेंट को पावर देने के लिए एक टेक्स्ट-जनरेशन मॉडल - क्योंकि एजेंट एक सिंपल LLM से अलग है, यह एक सिस्टम है जो LLM को अपने इंजन के रूप में उपयोग करता है। आप इनमें से कोई भी विकल्प उपयोग कर सकते हैं:

    • [TransformersModel] transformers पाइपलाइन को पहले से इनिशियलाइज़ करता है जो transformers का उपयोग करके आपकी लोकल मशीन पर इन्फरेंस चलाने के लिए होता है।
    • [InferenceClientModel] अंदर से huggingface_hub.InferenceClient का लाभ उठाता है।
    • [LiteLLMModel] आपको LiteLLM के माध्यम से 100+ अलग-अलग मॉडल्स को कॉल करने देता है!
  • tools, Tools की एक लिस्ट जिसे एजेंट टास्क को हल करने के लिए उपयोग कर सकता है। यह एक खाली लिस्ट हो सकती है। आप ऑप्शनल आर्ग्यूमेंट add_base_tools=True को परिभाषित करके अपनी tools लिस्ट के ऊपर डिफ़ॉल्ट टूलबॉक्स भी जोड़ सकते हैं।

एक बार जब आपके पास ये दो आर्ग्यूमेंट्स, tools और model हैं, तो आप एक एजेंट बना सकते हैं और इसे चला सकते हैं। आप कोई भी LLM उपयोग कर सकते हैं, या तो Hugging Face API, transformers, ollama, या LiteLLM के माध्यम से।

Hugging Face API टोकन के बिना उपयोग करने के लिए मुफ्त है, लेकिन फिर इसमें रेट लिमिटेशन होगी।

गेटेड मॉडल्स तक पहुंचने या PRO अकाउंट के साथ अपनी रेट लिमिट्स बढ़ाने के लिए, आपको एनवायरनमेंट वेरिएबल HF_TOKEN सेट करना होगा या InferenceClientModel के इनिशियलाइजेशन पर token वेरिएबल पास करना होगा।

from smolagents import CodeAgent, InferenceClientModel

model_id = "meta-llama/Llama-3.3-70B-Instruct"

model = InferenceClientModel(model_id=model_id, token="<YOUR_HUGGINGFACEHUB_API_TOKEN>")
agent = CodeAgent(tools=[], model=model, add_base_tools=True)

agent.run(
    "Could you give me the 118th number in the Fibonacci sequence?",
)
from smolagents import CodeAgent, TransformersModel

model_id = "meta-llama/Llama-3.2-3B-Instruct"

model = TransformersModel(model_id=model_id)
agent = CodeAgent(tools=[], model=model, add_base_tools=True)

agent.run(
    "Could you give me the 118th number in the Fibonacci sequence?",
)

LiteLLMModel का उपयोग करने के लिए, आपको एनवायरनमेंट वेरिएबल ANTHROPIC_API_KEY या OPENAI_API_KEY सेट करना होगा, या इनिशियलाइजेशन पर api_key वेरिएबल पास करना होगा।

from smolagents import CodeAgent, LiteLLMModel

model = LiteLLMModel(model_id="anthropic/claude-3-5-sonnet-latest", api_key="YOUR_ANTHROPIC_API_KEY") # Could use 'gpt-4o'
agent = CodeAgent(tools=[], model=model, add_base_tools=True)

agent.run(
    "Could you give me the 118th number in the Fibonacci sequence?",
)
from smolagents import CodeAgent, LiteLLMModel

model = LiteLLMModel(
    model_id="ollama_chat/llama3.2", # This model is a bit weak for agentic behaviours though
    api_base="http://localhost:11434", # replace with 127.0.0.1:11434 or remote open-ai compatible server if necessary
    api_key="YOUR_API_KEY" # replace with API key if necessary
    num_ctx=8192 # ollama default is 2048 which will fail horribly. 8192 works for easy tasks, more is better. Check https://huggingface.co/spaces/NyxKrage/LLM-Model-VRAM-Calculator to calculate how much VRAM this will need for the selected model.
)

agent = CodeAgent(tools=[], model=model, add_base_tools=True)

agent.run(
    "Could you give me the 118th number in the Fibonacci sequence?",
)

CodeAgent और ToolCallingAgent

[CodeAgent] हमारा डिफ़ॉल्ट एजेंट है। यह हर स्टेप पर पायथन कोड स्निपेट्स लिखेगा और एक्जीक्यूट करेगा।

डिफ़ॉल्ट रूप से, एक्जीक्यूशन आपके लोकल एनवायरनमेंट में किया जाता है। यह सुरक्षित होना चाहिए क्योंकि केवल वही फ़ंक्शंस कॉल किए जा सकते हैं जो आपने प्रदान किए हैं (विशेष रूप से यदि यह केवल Hugging Face टूल्स हैं) और पूर्व-परिभाषित सुरक्षित फ़ंक्शंस जैसे print या math मॉड्यूल से फ़ंक्शंस, इसलिए आप पहले से ही सीमित हैं कि क्या एक्जीक्यूट किया जा सकता है।

पायथन इंटरप्रेटर डिफ़ॉल्ट रूप से सेफ लिस्ट के बाहर इम्पोर्ट की अनुमति नहीं देता है, इसलिए सबसे स्पष्ट अटैक समस्या नहीं होनी चाहिए। आप अपने [CodeAgent] के इनिशियलाइजेशन पर आर्ग्यूमेंट additional_authorized_imports में स्ट्रिंग्स की लिस्ट के रूप में अतिरिक्त मॉड्यूल्स को अधिकृत कर सकते हैं।

model = InferenceClientModel()
agent = CodeAgent(tools=[], model=model, additional_authorized_imports=['requests', 'bs4'])
agent.run("Could you get me the title of the page at url 'https://huggingface.co/blog'?")

LLM आर्बिट्ररी कोड जनरेट कर सकता है जो फिर एक्जीक्यूट किया जाएगा: कोई असुरक्षित इम्पोर्ट न जोड़ें!

एक्जीक्यूशन किसी भी कोड पर रुक जाएगा जो एक अवैध ऑपरेशन करने का प्रयास करता है या यदि एजेंट द्वारा जनरेट किए गए कोड में एक रेगुलर पायथन एरर है।

आप E2B कोड एक्जीक्यूटर या Docker का उपयोग लोकल पायथन इंटरप्रेटर के बजाय कर सकते हैं। E2B के लिए, पहले E2B_API_KEY एनवायरनमेंट वेरिएबल सेट करें और फिर एजेंट इनिशियलाइजेशन पर executor_type="e2b" पास करें। Docker के लिए, इनिशियलाइजेशन के दौरान executor_type="docker" पास करें।

कोड एक्जीक्यूशन के बारे में और जानें इस ट्यूटोरियल में

हम JSON-जैसे ब्लॉब्स के रूप में एक्शन लिखने के व्यापक रूप से उपयोग किए जाने वाले तरीके का भी समर्थन करते हैं: यह [ToolCallingAgent] है, यह बहुत कुछ [CodeAgent] की तरह ही काम करता है, बेशक additional_authorized_imports के बिना क्योंकि यह कोड एक्जीक्यूट नहीं करता।

from smolagents import ToolCallingAgent

agent = ToolCallingAgent(tools=[], model=model)
agent.run("Could you get me the title of the page at url 'https://huggingface.co/blog'?")

एजेंट रन का निरीक्षण

रन के बाद क्या हुआ यह जांचने के लिए यहाँ कुछ उपयोगी एट्रिब्यूट्स हैं:

  • agent.logs एजेंट के फाइन-ग्रेन्ड लॉग्स को स्टोर करता है। एजेंट के रन के हर स्टेप पर, सब कुछ एक डिक्शनरी में स्टोर किया जाता है जो फिर agent.logs में जोड़ा जाता है।
  • agent.write_memory_to_messages() चलाने से LLM के लिए एजेंट के लॉग्स की एक इनर मेमोरी बनती है, चैट मैसेज की लिस्ट के रूप में। यह मेथड लॉग के प्रत्येक स्टेप पर जाता है और केवल वही स्टोर करता है जिसमें यह एक मैसेज के रूप में रुचि रखता है: उदाहरण के लिए, यह सिस्टम प्रॉम्प्ट और टास्क को अलग-अलग मैसेज के रूप में सेव करेगा, फिर प्रत्येक स्टेप के लिए यह LLM आउटपुट को एक मैसेज के रूप में और टूल कॉल आउटपुट को दूसरे मैसेज के रूप में स्टोर करेगा।

टूल्स

टूल एक एटॉमिक फ़ंक्शन है जिसे एजेंट द्वारा उपयोग किया जाता है। LLM द्वारा उपयोग किए जाने के लिए, इसे कुछ एट्रिब्यूट्स की भी आवश्यकता होती है जो इसकी API बनाते हैं और LLM को यह बताने के लिए उपयोग किए जाएंगे कि इस टूल को कैसे कॉल करें:

  • एक नाम
  • एक विवरण
  • इनपुट प्रकार और विवरण
  • एक आउटपुट प्रकार

आप उदाहरण के लिए [PythonInterpreterTool] को चेक कर सकते हैं: इसमें एक नाम, विवरण, इनपुट विवरण, एक आउटपुट प्रकार, और एक्शन करने के लिए एक forward मेथड है।

जब एजेंट इनिशियलाइज़ किया जाता है, टूल एट्रिब्यूट्स का उपयोग एक टूल विवरण जनरेट करने के लिए किया जाता है जो एजेंट के सिस्टम प्रॉम्प्ट में बेक किया जाता है। यह एजेंट को बताता है कि वह कौन से टूल्स उपयोग कर सकता है और क्यों।

डिफ़ॉल्ट टूलबॉक्स

smolagents एजेंट्स को सशक्त बनाने के लिए एक डिफ़ॉल्ट टूलबॉक्स के साथ आता है, जिसे आप आर्ग्यूमेंट add_base_tools=True के साथ अपने एजेंट में इनिशियलाइजेशन पर जोड़ सकते हैं:

  • DuckDuckGo वेब सर्च: DuckDuckGo ब्राउज़र का उपयोग करके वेब सर्च करता है।
  • पायथन कोड इंटरप्रेटर: आपका LLM जनरेटेड पायथन कोड एक सुरक्षित एनवायरनमेंट में चलाता है। यह टूल [ToolCallingAgent] में केवल तभी जोड़ा जाएगा जब आप इसे add_base_tools=True के साथ इनिशियलाइज़ करते हैं, क्योंकि कोड-बेस्ड एजेंट पहले से ही नेटिव रूप से पायथन कोड एक्जीक्यूट कर सकता है
  • ट्रांसक्राइबर: Whisper-Turbo पर बनाया गया एक स्पीच-टू-टेक्स्ट पाइपलाइन जो ऑडियो को टेक्स्ट में ट्रांसक्राइब करता है।

आप मैन्युअल रूप से एक टूल का उपयोग उसके आर्ग्यूमेंट्स के साथ कॉल करके कर सकते हैं।

from smolagents import WebSearchTool

search_tool = WebSearchTool()
print(search_tool("Who's the current president of Russia?"))

अपने कस्टम टूल बनाएं

आप ऐसे उपयोग के मामलों के लिए अपने खुद के टूल बना सकते हैं जो Hugging Face के डिफ़ॉल्ट टूल्स द्वारा कवर नहीं किए गए हैं।
उदाहरण के लिए, चलिए एक टूल बनाते हैं जो दिए गए कार्य (task) के लिए हब से सबसे अधिक डाउनलोड किए गए मॉडल को रिटर्न करता है।

आप नीचे दिए गए कोड से शुरुआत करेंगे।

from huggingface_hub import list_models

task = "text-classification"

most_downloaded_model = next(iter(list_models(filter=task, sort="downloads", direction=-1)))
print(most_downloaded_model.id)

यह कोड आसानी से टूल में बदला जा सकता है, बस इसे एक फ़ंक्शन में रैप करें और tool डेकोरेटर जोड़ें:
यह टूल बनाने का एकमात्र तरीका नहीं है: आप इसे सीधे [Tool] का सबक्लास बनाकर भी परिभाषित कर सकते हैं, जो आपको अधिक लचीलापन प्रदान करता है, जैसे भारी क्लास एट्रिब्यूट्स को इनिशियलाइज़ करने की संभावना।

चलो देखते हैं कि यह दोनों विकल्पों के लिए कैसे काम करता है:

from smolagents import tool

@tool
def model_download_tool(task: str) -> str:
    """
    This is a tool that returns the most downloaded model of a given task on the Hugging Face Hub.
    It returns the name of the checkpoint.

    Args:
        task: The task for which to get the download count.
    """
    most_downloaded_model = next(iter(list_models(filter=task, sort="downloads", direction=-1)))
    return most_downloaded_model.id

फ़ंक्शन को चाहिए:

  • एक स्पष्ट नाम: नाम टूल के कार्य को स्पष्ट रूप से बताने वाला होना चाहिए ताकि इसे चलाने वाले LLM को आसानी हो। चूंकि यह टूल कार्य के लिए सबसे अधिक डाउनलोड किए गए मॉडल को लौटाता है, इसका नाम model_download_tool रखा गया है।
  • इनपुट और आउटपुट पर टाइप हिंट्स।
  • एक विवरण: इसमें 'Args:' भाग शामिल होना चाहिए, जिसमें प्रत्येक आर्ग्युमेंट का वर्णन (बिना टाइप संकेत के) किया गया हो। यह विवरण एक निर्देश मैनुअल की तरह होता है जो LLM को टूल चलाने में मदद करता है। इसे अनदेखा न करें।
    इन सभी तत्वों को एजेंट की सिस्टम प्रॉम्प्ट में स्वचालित रूप से शामिल किया जाएगा: इसलिए इन्हें यथासंभव स्पष्ट बनाने का प्रयास करें!

यह परिभाषा प्रारूप apply_chat_template में उपयोग की गई टूल स्कीमा जैसा ही है, केवल अतिरिक्त tool डेकोरेटर जोड़ा गया है: हमारे टूल उपयोग API के बारे में अधिक पढ़ें यहाँ

from smolagents import Tool

class ModelDownloadTool(Tool):
    name = "model_download_tool"
    description = "This is a tool that returns the most downloaded model of a given task on the Hugging Face Hub. It returns the name of the checkpoint."
    inputs = {"task": {"type": "string", "description": "The task for which to get the download count."}}
    output_type = "string"

    def forward(self, task: str) -> str:
        most_downloaded_model = next(iter(list_models(filter=task, sort="downloads", direction=-1)))
        return most_downloaded_model.id

सबक्लास को निम्नलिखित एट्रिब्यूट्स की आवश्यकता होती है:

  • एक स्पष्ट name: नाम टूल के कार्य को स्पष्ट रूप से बताने वाला होना चाहिए।
  • एक description: यह भी LLM के लिए निर्देश मैनुअल की तरह काम करता है।
  • इनपुट प्रकार और उनके विवरण।
  • आउटपुट प्रकार।
    इन सभी एट्रिब्यूट्स को एजेंट की सिस्टम प्रॉम्प्ट में स्वचालित रूप से शामिल किया जाएगा, इन्हें स्पष्ट और विस्तृत बनाएं।

आप सीधे अपने एजेंट को इनिशियलाइज़ कर सकते हैं:

from smolagents import CodeAgent, InferenceClientModel
agent = CodeAgent(tools=[model_download_tool], model=InferenceClientModel())
agent.run(
    "Can you give me the name of the model that has the most downloads in the 'text-to-video' task on the Hugging Face Hub?"
)

लॉग्स इस प्रकार होंगे:

╭──────────────────────────────────────── New run ─────────────────────────────────────────╮
│                                                                                          │
│ Can you give me the name of the model that has the most downloads in the 'text-to-video' │
│ task on the Hugging Face Hub?                                                            │
│                                                                                          │
╰─ InferenceClientModel - Qwen/Qwen2.5-Coder-32B-Instruct ───────────────────────────────────────────╯
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Step 0 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
╭─ Executing this code: ───────────────────────────────────────────────────────────────────╮
│   1 model_name = model_download_tool(task="text-to-video")                               │
│   2 print(model_name)                                                                    │
╰──────────────────────────────────────────────────────────────────────────────────────────╯
Execution logs:
ByteDance/AnimateDiff-Lightning

Out: None
[Step 0: Duration 0.27 seconds| Input tokens: 2,069 | Output tokens: 60]
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Step 1 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
╭─ Executing this code: ───────────────────────────────────────────────────────────────────╮
│   1 final_answer("ByteDance/AnimateDiff-Lightning")                                      │
╰──────────────────────────────────────────────────────────────────────────────────────────╯
Out - Final answer: ByteDance/AnimateDiff-Lightning
[Step 1: Duration 0.10 seconds| Input tokens: 4,288 | Output tokens: 148]
Out[20]: 'ByteDance/AnimateDiff-Lightning'

[!TIP]

टूल्स के बारे में अधिक पढ़ें dedicated tutorial में।

मल्टी-एजेंट्स

Microsoft के फ्रेमवर्क Autogen के साथ मल्टी-एजेंट सिस्टम्स की शुरुआत हुई।

इस प्रकार के फ्रेमवर्क में, आपके कार्य को हल करने के लिए कई एजेंट्स एक साथ काम करते हैं, न कि केवल एक।
यह अधिकांश बेंचमार्क्स पर बेहतर प्रदर्शन देता है। इसका कारण यह है कि कई कार्यों के लिए, एक सर्व-समावेशी प्रणाली के बजाय, आप उप-कार्यों पर विशेषज्ञता रखने वाली इकाइयों को पसंद करेंगे। इस तरह, अलग-अलग टूल सेट्स और मेमोरी वाले एजेंट्स के पास विशेषकरण की अधिक कुशलता होती है। उदाहरण के लिए, कोड उत्पन्न करने वाले एजेंट की मेमोरी को वेब सर्च एजेंट द्वारा देखे गए वेबपेजों की सभी सामग्री से क्यों भरें? इन्हें अलग रखना बेहतर है।

आप smolagents का उपयोग करके आसानी से श्रेणीबद्ध मल्टी-एजेंट सिस्टम्स बना सकते हैं।

ऐसा करने के लिए, एजेंट को [ManagedAgent] ऑब्जेक्ट में समाहित करें। यह ऑब्जेक्ट agent, name, और एक description जैसे तर्कों की आवश्यकता होती है, जो फिर मैनेजर एजेंट की सिस्टम प्रॉम्प्ट में एम्बेड किया जाता है

यहां एक एजेंट बनाने का उदाहरण दिया गया है जो हमारे [WebSearchTool] का उपयोग करके एक विशिष्ट वेब खोज एजेंट को प्रबंधित करता है।

from smolagents import CodeAgent, InferenceClientModel, WebSearchTool, ManagedAgent

model = InferenceClientModel()

web_agent = CodeAgent(tools=[WebSearchTool()], model=model)

managed_web_agent = ManagedAgent(
    agent=web_agent,
    name="web_search",
    description="Runs web searches for you. Give it your query as an argument."
)

manager_agent = CodeAgent(
    tools=[], model=model, managed_agents=[managed_web_agent]
)

manager_agent.run("Who is the CEO of Hugging Face?")

कुशल मल्टी-एजेंट इंप्लीमेंटेशन का एक विस्तृत उदाहरण देखने के लिए, कैसे हमने अपने मल्टी-एजेंट सिस्टम को GAIA लीडरबोर्ड के शीर्ष पर पहुंचाया पर जाएं।

अपने एजेंट से बात करें और उसके विचारों को एक शानदार Gradio इंटरफेस में विज़ुअलाइज़ करें

आप GradioUI का उपयोग करके अपने एजेंट को इंटरैक्टिव तरीके से कार्य सौंप सकते हैं और उसके सोचने और निष्पादन की प्रक्रिया को देख सकते हैं। नीचे एक उदाहरण दिया गया है:

from smolagents import (
    load_tool,
    CodeAgent,
    InferenceClientModel,
    GradioUI
)

# Import tool from Hub
image_generation_tool = load_tool("m-ric/text-to-image", trust_remote_code=True)

model = InferenceClientModel(model_id=model_id)

# Initialize the agent with the image generation tool
agent = CodeAgent(tools=[image_generation_tool], model=model)

GradioUI(agent).launch()

अंदरूनी तौर पर, जब यूजर एक नया उत्तर टाइप करता है, तो एजेंट को agent.run(user_request, reset=False) के साथ लॉन्च किया जाता है।
यहाँ reset=False फ्लैग का मतलब है कि एजेंट की मेमोरी इस नए कार्य को लॉन्च करने से पहले क्लियर नहीं होती, जिससे बातचीत जारी रहती है।

आप इस reset=False आर्ग्युमेंट का उपयोग किसी भी अन्य एजेंटिक एप्लिकेशन में बातचीत जारी रखने के लिए कर सकते हैं।

अगले कदम

अधिक गहन उपयोग के लिए, आप हमारे ट्यूटोरियल्स देख सकते हैं: