A newer version of the Gradio SDK is available:
5.35.0
Text-to-SQL
[[open-in-colab]]
在此教程中,我们将看到如何使用 smolagents
实现一个利用 SQL 的 agent。
让我们从经典问题开始:为什么不简单地使用标准的 text-to-SQL pipeline 呢?
标准的 text-to-SQL pipeline 很脆弱,因为生成的 SQL 查询可能会出错。更糟糕的是,查询可能出错却不引发错误警报,从而返回一些不正确或无用的结果。
👉 相反,agent 系统则可以检视输出结果并决定查询是否需要被更改,因此带来巨大的性能提升。
让我们来一起构建这个 agent! 💪
首先,我们构建一个 SQL 的环境:
from sqlalchemy import (
create_engine,
MetaData,
Table,
Column,
String,
Integer,
Float,
insert,
inspect,
text,
)
engine = create_engine("sqlite:///:memory:")
metadata_obj = MetaData()
# create city SQL table
table_name = "receipts"
receipts = Table(
table_name,
metadata_obj,
Column("receipt_id", Integer, primary_key=True),
Column("customer_name", String(16), primary_key=True),
Column("price", Float),
Column("tip", Float),
)
metadata_obj.create_all(engine)
rows = [
{"receipt_id": 1, "customer_name": "Alan Payne", "price": 12.06, "tip": 1.20},
{"receipt_id": 2, "customer_name": "Alex Mason", "price": 23.86, "tip": 0.24},
{"receipt_id": 3, "customer_name": "Woodrow Wilson", "price": 53.43, "tip": 5.43},
{"receipt_id": 4, "customer_name": "Margaret James", "price": 21.11, "tip": 1.00},
]
for row in rows:
stmt = insert(receipts).values(**row)
with engine.begin() as connection:
cursor = connection.execute(stmt)
构建 agent
现在,我们构建一个 agent,它将使用 SQL 查询来回答问题。工具的 description 属性将被 agent 系统嵌入到 LLM 的提示中:它为 LLM 提供有关如何使用该工具的信息。这正是我们描述 SQL 表的地方。
inspector = inspect(engine)
columns_info = [(col["name"], col["type"]) for col in inspector.get_columns("receipts")]
table_description = "Columns:\n" + "\n".join([f" - {name}: {col_type}" for name, col_type in columns_info])
print(table_description)
Columns:
- receipt_id: INTEGER
- customer_name: VARCHAR(16)
- price: FLOAT
- tip: FLOAT
现在让我们构建我们的工具。它需要以下内容:(更多细节请参阅工具文档)
- 一个带有
Args:
部分列出参数的 docstring。 - 输入和输出的type hints。
from smolagents import tool
@tool
def sql_engine(query: str) -> str:
"""
Allows you to perform SQL queries on the table. Returns a string representation of the result.
The table is named 'receipts'. Its description is as follows:
Columns:
- receipt_id: INTEGER
- customer_name: VARCHAR(16)
- price: FLOAT
- tip: FLOAT
Args:
query: The query to perform. This should be correct SQL.
"""
output = ""
with engine.connect() as con:
rows = con.execute(text(query))
for row in rows:
output += "\n" + str(row)
return output
我们现在使用这个工具来创建一个 agent。我们使用 CodeAgent
,这是 smolagent 的主要 agent 类:一个在代码中编写操作并根据 ReAct 框架迭代先前输出的 agent。
这个模型是驱动 agent 系统的 LLM。InferenceClientModel
允许你使用 HF Inference API 调用 LLM,无论是通过 Serverless 还是 Dedicated endpoint,但你也可以使用任何专有 API。
from smolagents import CodeAgent, InferenceClientModel
agent = CodeAgent(
tools=[sql_engine],
model=InferenceClientModel(model_id="meta-llama/Meta-Llama-3.1-8B-Instruct"),
)
agent.run("Can you give me the name of the client who got the most expensive receipt?")
Level 2: 表连接
现在让我们增加一些挑战!我们希望我们的 agent 能够处理跨多个表的连接。因此,我们创建一个新表,记录每个 receipt_id 的服务员名字!
table_name = "waiters"
receipts = Table(
table_name,
metadata_obj,
Column("receipt_id", Integer, primary_key=True),
Column("waiter_name", String(16), primary_key=True),
)
metadata_obj.create_all(engine)
rows = [
{"receipt_id": 1, "waiter_name": "Corey Johnson"},
{"receipt_id": 2, "waiter_name": "Michael Watts"},
{"receipt_id": 3, "waiter_name": "Michael Watts"},
{"receipt_id": 4, "waiter_name": "Margaret James"},
]
for row in rows:
stmt = insert(receipts).values(**row)
with engine.begin() as connection:
cursor = connection.execute(stmt)
因为我们改变了表,我们需要更新 SQLExecutorTool
,让 LLM 能够正确利用这个表的信息。
updated_description = """Allows you to perform SQL queries on the table. Beware that this tool's output is a string representation of the execution output.
It can use the following tables:"""
inspector = inspect(engine)
for table in ["receipts", "waiters"]:
columns_info = [(col["name"], col["type"]) for col in inspector.get_columns(table)]
table_description = f"Table '{table}':\n"
table_description += "Columns:\n" + "\n".join([f" - {name}: {col_type}" for name, col_type in columns_info])
updated_description += "\n\n" + table_description
print(updated_description)
因为这个request 比之前的要难一些,我们将 LLM 引擎切换到更强大的 Qwen/Qwen2.5-Coder-32B-Instruct!
sql_engine.description = updated_description
agent = CodeAgent(
tools=[sql_engine],
model=InferenceClientModel(model_id="Qwen/Qwen2.5-Coder-32B-Instruct"),
)
agent.run("Which waiter got more total money from tips?")
它直接就能工作!设置过程非常简单,难道不是吗?
这个例子到此结束!我们涵盖了这些概念:
- 构建新工具。
- 更新工具的描述。
- 切换到更强大的 LLM 有助于 agent 推理。
✅ 现在你可以构建你一直梦寐以求的 text-to-SQL 系统了!✨