EXCAI's picture
deploy cotracker on cpu
182f943
raw
history blame
35.8 kB
import os
import sys
import spaces
import gradio as gr
import torch
import argparse
from PIL import Image
import numpy as np
import torchvision.transforms as transforms
from moviepy.editor import VideoFileClip
from diffusers.utils import load_image, load_video
from tqdm import tqdm
from image_gen_aux import DepthPreprocessor
project_root = os.path.dirname(os.path.abspath(__file__))
os.environ["GRADIO_TEMP_DIR"] = os.path.join(project_root, "tmp", "gradio")
sys.path.append(project_root)
try:
sys.path.append(os.path.join(project_root, "submodules/MoGe"))
sys.path.append(os.path.join(project_root, "submodules/vggt"))
os.environ["TOKENIZERS_PARALLELISM"] = "false"
except:
print("Warning: MoGe not found, motion transfer will not be applied")
HERE_PATH = os.path.normpath(os.path.dirname(__file__))
sys.path.insert(0, HERE_PATH)
from huggingface_hub import hf_hub_download
hf_hub_download(repo_id="EXCAI/Diffusion-As-Shader", filename='spatracker/spaT_final.pth', local_dir=f'{HERE_PATH}/checkpoints/')
from models.pipelines import DiffusionAsShaderPipeline, FirstFrameRepainter, CameraMotionGenerator, ObjectMotionGenerator
from submodules.MoGe.moge.model import MoGeModel
from submodules.vggt.vggt.utils.pose_enc import pose_encoding_to_extri_intri
from submodules.vggt.vggt.models.vggt import VGGT
# Parse command line arguments
parser = argparse.ArgumentParser(description="Diffusion as Shader Web UI")
parser.add_argument("--port", type=int, default=7860, help="Port to run the web UI on")
parser.add_argument("--share", action="store_true", help="Share the web UI")
parser.add_argument("--gpu", type=int, default=0, help="GPU device ID")
parser.add_argument("--model_path", type=str, default="EXCAI/Diffusion-As-Shader", help="Path to model checkpoint")
parser.add_argument("--output_dir", type=str, default="tmp", help="Output directory")
args = parser.parse_args()
# Use the original GPU ID throughout the entire code for consistency
GPU_ID = args.gpu
DEFAULT_MODEL_PATH = args.model_path
OUTPUT_DIR = args.output_dir
# Create necessary directories
os.makedirs("outputs", exist_ok=True)
# Create project tmp directory instead of using system temp
os.makedirs(os.path.join(project_root, "tmp"), exist_ok=True)
os.makedirs(os.path.join(project_root, "tmp", "gradio"), exist_ok=True)
def load_media(media_path, max_frames=49, transform=None):
"""Load video or image frames and convert to tensor
Args:
media_path (str): Path to video or image file
max_frames (int): Maximum number of frames to load
transform (callable): Transform to apply to frames
Returns:
Tuple[torch.Tensor, float, bool]: Video tensor [T,C,H,W], FPS, and is_video flag
"""
if transform is None:
transform = transforms.Compose([
transforms.Resize((480, 720)),
transforms.ToTensor()
])
# Determine if input is video or image based on extension
ext = os.path.splitext(media_path)[1].lower()
is_video = ext in ['.mp4', '.avi', '.mov']
if is_video:
# Load video file info
video_clip = VideoFileClip(media_path)
duration = video_clip.duration
original_fps = video_clip.fps
# Case 1: Video longer than 6 seconds, sample first 6 seconds + 1 frame
if duration > 6.0:
sampling_fps = 8 # 8 frames per second
frames = load_video(media_path, sampling_fps=sampling_fps, max_frames=max_frames)
fps = sampling_fps
# Cases 2 and 3: Video shorter than 6 seconds
else:
# Load all frames
frames = load_video(media_path)
# Case 2: Total frames less than max_frames, need interpolation
if len(frames) < max_frames:
fps = len(frames) / duration # Keep original fps
# Evenly interpolate to max_frames
indices = np.linspace(0, len(frames) - 1, max_frames)
new_frames = []
for i in indices:
idx = int(i)
new_frames.append(frames[idx])
frames = new_frames
# Case 3: Total frames more than max_frames but video less than 6 seconds
else:
# Evenly sample to max_frames
indices = np.linspace(0, len(frames) - 1, max_frames)
new_frames = []
for i in indices:
idx = int(i)
new_frames.append(frames[idx])
frames = new_frames
fps = max_frames / duration # New fps to maintain duration
else:
# Handle image as single frame
image = load_image(media_path)
frames = [image]
fps = 8 # Default fps for images
# Duplicate frame to max_frames
while len(frames) < max_frames:
frames.append(frames[0].copy())
# Convert frames to tensor
video_tensor = torch.stack([transform(frame) for frame in frames])
return video_tensor, fps, is_video
def save_uploaded_file(file):
if file is None:
return None
# Use project tmp directory instead of system temp
temp_dir = os.path.join(project_root, "tmp")
if hasattr(file, 'name'):
filename = file.name
else:
# Generate a unique filename if name attribute is missing
import uuid
ext = ".tmp"
if hasattr(file, 'content_type'):
if "image" in file.content_type:
ext = ".png"
elif "video" in file.content_type:
ext = ".mp4"
filename = f"{uuid.uuid4()}{ext}"
temp_path = os.path.join(temp_dir, filename)
try:
# Check if file is a FileStorage object or already a path
if hasattr(file, 'save'):
file.save(temp_path)
elif isinstance(file, str):
# It's already a path
return file
else:
# Try to read and save the file
with open(temp_path, 'wb') as f:
f.write(file.read() if hasattr(file, 'read') else file)
except Exception as e:
print(f"Error saving file: {e}")
return None
return temp_path
das_pipeline = None
moge_model = None
vggt_model = None
@spaces.GPU
def get_das_pipeline():
global das_pipeline
if das_pipeline is None:
das_pipeline = DiffusionAsShaderPipeline(gpu_id=GPU_ID, output_dir=OUTPUT_DIR)
return das_pipeline
@spaces.GPU
def get_moge_model():
global moge_model
if moge_model is None:
das = get_das_pipeline()
moge_model = MoGeModel.from_pretrained("Ruicheng/moge-vitl").to(das.device)
return moge_model
@spaces.GPU
def get_vggt_model():
global vggt_model
if vggt_model is None:
das = get_das_pipeline()
vggt_model = VGGT.from_pretrained("facebook/VGGT-1B").to(das.device)
return vggt_model
def process_motion_transfer(source, prompt, mt_repaint_option, mt_repaint_image):
"""Process video motion transfer task"""
try:
# Save uploaded files
input_video_path = save_uploaded_file(source)
if input_video_path is None:
return None, None
print(f"DEBUG: Repaint option: {mt_repaint_option}")
print(f"DEBUG: Repaint image: {mt_repaint_image}")
das = get_das_pipeline()
video_tensor, fps, is_video = load_media(input_video_path)
das.fps = fps # 设置 das.fps 为 load_media 返回的 fps
if not is_video:
tracking_method = "moge"
print("Image input detected, using MoGe for tracking video generation.")
else:
tracking_method = "cotracker"
repaint_img_tensor = None
if mt_repaint_image is not None:
repaint_path = save_uploaded_file(mt_repaint_image)
repaint_img_tensor, _, _ = load_media(repaint_path)
repaint_img_tensor = repaint_img_tensor[0]
elif mt_repaint_option == "Yes":
repainter = FirstFrameRepainter(gpu_id=GPU_ID, output_dir=OUTPUT_DIR)
repaint_img_tensor = repainter.repaint(
video_tensor[0],
prompt=prompt,
depth_path=None
)
tracking_tensor = None
tracking_path = None
if tracking_method == "moge":
moge = get_moge_model()
infer_result = moge.infer(video_tensor[0].to(das.device)) # [C, H, W] in range [0,1]
H, W = infer_result["points"].shape[0:2]
pred_tracks = infer_result["points"].unsqueeze(0).repeat(49, 1, 1, 1) #[T, H, W, 3]
poses = torch.eye(4).unsqueeze(0).repeat(49, 1, 1)
pred_tracks_flatten = pred_tracks.reshape(video_tensor.shape[0], H*W, 3)
cam_motion = CameraMotionGenerator(None)
cam_motion.set_intr(infer_result["intrinsics"])
pred_tracks = cam_motion.w2s(pred_tracks_flatten, poses).reshape([video_tensor.shape[0], H, W, 3]) # [T, H, W, 3]
tracking_path, tracking_tensor = das.visualize_tracking_moge(
pred_tracks.cpu().numpy(),
infer_result["mask"].cpu().numpy()
)
print('Export tracking video via MoGe')
else:
# 使用 cotracker
pred_tracks, pred_visibility = generate_tracking_cotracker(video_tensor)
tracking_path, tracking_tensor = das.visualize_tracking_cotracker(pred_tracks, pred_visibility)
print('Export tracking video via cotracker')
output_path = das.apply_tracking(
video_tensor=video_tensor,
fps=fps, # 使用 load_media 返回的 fps
tracking_tensor=tracking_tensor,
img_cond_tensor=repaint_img_tensor,
prompt=prompt,
checkpoint_path=DEFAULT_MODEL_PATH
)
return tracking_path, output_path
except Exception as e:
import traceback
print(f"Processing failed: {str(e)}\n{traceback.format_exc()}")
return None, None
def process_camera_control(source, prompt, camera_motion, tracking_method):
"""Process camera control task"""
try:
# Save uploaded files
input_media_path = save_uploaded_file(source)
if input_media_path is None:
return None, None
print(f"DEBUG: Camera motion: '{camera_motion}'")
print(f"DEBUG: Tracking method: '{tracking_method}'")
das = get_das_pipeline()
video_tensor, fps, is_video = load_media(input_media_path)
das.fps = fps # 设置 das.fps 为 load_media 返回的 fps
if not is_video:
tracking_method = "moge"
print("Image input detected, switching to MoGe")
cam_motion = CameraMotionGenerator(camera_motion)
repaint_img_tensor = None
tracking_tensor = None
if tracking_method == "moge":
moge = get_moge_model()
infer_result = moge.infer(video_tensor[0].to(das.device)) # [C, H, W] in range [0,1]
H, W = infer_result["points"].shape[0:2]
pred_tracks = infer_result["points"].unsqueeze(0).repeat(49, 1, 1, 1) #[T, H, W, 3]
cam_motion.set_intr(infer_result["intrinsics"])
if camera_motion:
poses = cam_motion.get_default_motion() # shape: [49, 4, 4]
print("Camera motion applied")
else:
poses = torch.eye(4).unsqueeze(0).repeat(49, 1, 1)
pred_tracks_flatten = pred_tracks.reshape(video_tensor.shape[0], H*W, 3)
pred_tracks = cam_motion.w2s(pred_tracks_flatten, poses).reshape([video_tensor.shape[0], H, W, 3]) # [T, H, W, 3]
_, tracking_tensor = das.visualize_tracking_moge(
pred_tracks.cpu().numpy(),
infer_result["mask"].cpu().numpy()
)
print('Export tracking video via MoGe')
else:
# 使用在CPU上运行的cotracker
pred_tracks, pred_visibility = generate_tracking_cotracker(video_tensor)
t, c, h, w = video_tensor.shape
new_width = 518
new_height = round(h * (new_width / w) / 14) * 14
resize_transform = transforms.Resize((new_height, new_width), interpolation=Image.BICUBIC)
video_vggt = resize_transform(video_tensor) # [T, C, H, W]
if new_height > 518:
start_y = (new_height - 518) // 2
video_vggt = video_vggt[:, :, start_y:start_y + 518, :]
vggt_model = get_vggt_model()
with torch.no_grad():
with torch.cuda.amp.autocast(dtype=das.dtype):
video_vggt = video_vggt.unsqueeze(0) # [1, T, C, H, W]
aggregated_tokens_list, ps_idx = vggt_model.aggregator(video_vggt.to(das.device))
extr, intr = pose_encoding_to_extri_intri(vggt_model.camera_head(aggregated_tokens_list)[-1], video_vggt.shape[-2:])
cam_motion.set_intr(intr)
cam_motion.set_extr(extr)
if camera_motion:
poses = cam_motion.get_default_motion() # shape: [49, 4, 4]
pred_tracks_world = cam_motion.s2w_vggt(pred_tracks, extr, intr)
pred_tracks = cam_motion.w2s_vggt(pred_tracks_world, extr, intr, poses) # [T, N, 3]
print("Camera motion applied")
tracking_path, tracking_tensor = das.visualize_tracking_cotracker(pred_tracks, None)
print('Export tracking video via cotracker')
output_path = das.apply_tracking(
video_tensor=video_tensor,
fps=fps, # 使用 load_media 返回的 fps
tracking_tensor=tracking_tensor,
img_cond_tensor=repaint_img_tensor,
prompt=prompt,
checkpoint_path=DEFAULT_MODEL_PATH
)
return tracking_path, output_path
except Exception as e:
import traceback
print(f"Processing failed: {str(e)}\n{traceback.format_exc()}")
return None, None
def process_object_manipulation(source, prompt, object_motion, object_mask, tracking_method):
"""Process object manipulation task"""
try:
# Save uploaded files
input_image_path = save_uploaded_file(source)
if input_image_path is None:
return None, None
object_mask_path = save_uploaded_file(object_mask)
if object_mask_path is None:
print("Object mask not provided")
return None, None
das = get_das_pipeline()
video_tensor, fps, is_video = load_media(input_image_path)
das.fps = fps # 设置 das.fps 为 load_media 返回的 fps
if not is_video:
tracking_method = "moge"
print("Image input detected, switching to MoGe")
mask_image = Image.open(object_mask_path).convert('L')
mask_image = transforms.Resize((480, 720))(mask_image)
mask = torch.from_numpy(np.array(mask_image) > 127)
motion_generator = ObjectMotionGenerator(device=das.device)
repaint_img_tensor = None
tracking_tensor = None
if tracking_method == "moge":
moge = get_moge_model()
infer_result = moge.infer(video_tensor[0].to(das.device)) # [C, H, W] in range [0,1]
H, W = infer_result["points"].shape[0:2]
pred_tracks = infer_result["points"].unsqueeze(0).repeat(49, 1, 1, 1) #[T, H, W, 3]
pred_tracks = motion_generator.apply_motion(
pred_tracks=pred_tracks,
mask=mask,
motion_type=object_motion,
distance=50,
num_frames=49,
tracking_method="moge"
)
print(f"Object motion '{object_motion}' applied using provided mask")
poses = torch.eye(4).unsqueeze(0).repeat(49, 1, 1)
pred_tracks_flatten = pred_tracks.reshape(video_tensor.shape[0], H*W, 3)
cam_motion = CameraMotionGenerator(None)
cam_motion.set_intr(infer_result["intrinsics"])
pred_tracks = cam_motion.w2s(pred_tracks_flatten, poses).reshape([video_tensor.shape[0], H, W, 3]) # [T, H, W, 3]
_, tracking_tensor = das.visualize_tracking_moge(
pred_tracks.cpu().numpy(),
infer_result["mask"].cpu().numpy()
)
print('Export tracking video via MoGe')
else:
# 使用在CPU上运行的cotracker
pred_tracks, pred_visibility = generate_tracking_cotracker(video_tensor)
t, c, h, w = video_tensor.shape
new_width = 518
new_height = round(h * (new_width / w) / 14) * 14
resize_transform = transforms.Resize((new_height, new_width), interpolation=Image.BICUBIC)
video_vggt = resize_transform(video_tensor) # [T, C, H, W]
if new_height > 518:
start_y = (new_height - 518) // 2
video_vggt = video_vggt[:, :, start_y:start_y + 518, :]
vggt_model = get_vggt_model()
with torch.no_grad():
with torch.cuda.amp.autocast(dtype=das.dtype):
video_vggt = video_vggt.unsqueeze(0) # [1, T, C, H, W]
aggregated_tokens_list, ps_idx = vggt_model.aggregator(video_vggt.to(das.device))
extr, intr = pose_encoding_to_extri_intri(vggt_model.camera_head(aggregated_tokens_list)[-1], video_vggt.shape[-2:])
pred_tracks = motion_generator.apply_motion(
pred_tracks=pred_tracks.squeeze(),
mask=mask,
motion_type=object_motion,
distance=50,
num_frames=49,
tracking_method="cotracker"
)
print(f"Object motion '{object_motion}' applied using provided mask")
tracking_path, tracking_tensor = das.visualize_tracking_cotracker(pred_tracks.unsqueeze(0), None)
print('Export tracking video via cotracker')
output_path = das.apply_tracking(
video_tensor=video_tensor,
fps=fps, # 使用 load_media 返回的 fps
tracking_tensor=tracking_tensor,
img_cond_tensor=repaint_img_tensor,
prompt=prompt,
checkpoint_path=DEFAULT_MODEL_PATH
)
return tracking_path, output_path
except Exception as e:
import traceback
print(f"Processing failed: {str(e)}\n{traceback.format_exc()}")
return None, None
def process_mesh_animation(source, prompt, tracking_video, ma_repaint_option, ma_repaint_image):
"""Process mesh animation task"""
try:
# Save uploaded files
input_video_path = save_uploaded_file(source)
if input_video_path is None:
return None, None
tracking_video_path = save_uploaded_file(tracking_video)
if tracking_video_path is None:
return None, None
das = get_das_pipeline()
video_tensor, fps, is_video = load_media(input_video_path)
das.fps = fps # 设置 das.fps 为 load_media 返回的 fps
tracking_tensor, tracking_fps, _ = load_media(tracking_video_path)
repaint_img_tensor = None
if ma_repaint_image is not None:
repaint_path = save_uploaded_file(ma_repaint_image)
repaint_img_tensor, _, _ = load_media(repaint_path)
repaint_img_tensor = repaint_img_tensor[0] # 获取第一帧
elif ma_repaint_option == "Yes":
repainter = FirstFrameRepainter(gpu_id=GPU_ID, output_dir=OUTPUT_DIR)
repaint_img_tensor = repainter.repaint(
video_tensor[0],
prompt=prompt,
depth_path=None
)
output_path = das.apply_tracking(
video_tensor=video_tensor,
fps=fps, # 使用 load_media 返回的 fps
tracking_tensor=tracking_tensor,
img_cond_tensor=repaint_img_tensor,
prompt=prompt,
checkpoint_path=DEFAULT_MODEL_PATH
)
return tracking_video_path, output_path
except Exception as e:
import traceback
print(f"Processing failed: {str(e)}\n{traceback.format_exc()}")
return None, None
def generate_tracking_cotracker(video_tensor, density=30):
"""在CPU上生成跟踪视频,只使用第一帧的深度信息,使用矩阵运算提高效率
参数:
video_tensor (torch.Tensor): 输入视频张量
density (int): 跟踪点的密度
返回:
tuple: (pred_tracks, pred_visibility)
"""
cotracker = torch.hub.load("facebookresearch/co-tracker", "cotracker3_offline").to("cpu")
depth_preprocessor = DepthPreprocessor.from_pretrained("Intel/zoedepth-nyu-kitti").to("cpu")
video = video_tensor.unsqueeze(0).to("cpu")
# 只处理第一帧以获取深度图
print("estimating depth for first frame...")
frame = (video_tensor[0].permute(1, 2, 0).cpu().numpy() * 255).astype(np.uint8)
depth = depth_preprocessor(Image.fromarray(frame))[0]
depth_tensor = transforms.ToTensor()(depth) # [1, H, W]
# 获取跟踪点和可见性
print("tracking on CPU...")
pred_tracks, pred_visibility = cotracker(video, grid_size=density) # B T N 2, B T N 1
# 提取维度
B, T, N, _ = pred_tracks.shape
H, W = depth_tensor.shape[1], depth_tensor.shape[2]
# 创建带深度的输出张量
pred_tracks_with_depth = torch.zeros((B, T, N, 3), device="cpu")
pred_tracks_with_depth[:, :, :, :2] = pred_tracks # 复制x,y坐标
# 使用矩阵运算一次性处理所有帧和点
# 重塑pred_tracks为[B*T*N, 2]以便于处理
flat_tracks = pred_tracks.reshape(-1, 2)
# 将坐标限制在有效图像边界内
x_coords = flat_tracks[:, 0].clamp(0, W-1).long()
y_coords = flat_tracks[:, 1].clamp(0, H-1).long()
# 从第一帧的深度图获取所有点的深度值
depths = depth_tensor[0, y_coords, x_coords]
# 重塑回原始形状并分配给输出张量
pred_tracks_with_depth[:, :, :, 2] = depths.reshape(B, T, N)
del cotracker,depth_preprocessor
# 将结果返回
return pred_tracks_with_depth.squeeze(0), pred_visibility.squeeze(0)
# Create Gradio interface with updated layout
with gr.Blocks(title="Diffusion as Shader") as demo:
gr.Markdown("# Diffusion as Shader Web UI")
gr.Markdown("### [Project Page](https://igl-hkust.github.io/das/) | [GitHub](https://github.com/IGL-HKUST/DiffusionAsShader)")
with gr.Row():
left_column = gr.Column(scale=1)
right_column = gr.Column(scale=1)
with right_column:
output_video = gr.Video(label="Generated Video")
tracking_video = gr.Video(label="Tracking Video")
with left_column:
source = gr.File(label="Source", file_types=["image", "video"])
common_prompt = gr.Textbox(label="Prompt", lines=2)
gr.Markdown(f"**Using GPU: {GPU_ID}**")
with gr.Tabs() as task_tabs:
# Motion Transfer tab
with gr.TabItem("Motion Transfer"):
gr.Markdown("## Motion Transfer")
# Simplified controls - Radio buttons for Yes/No and separate file upload
with gr.Row():
mt_repaint_option = gr.Radio(
label="Repaint First Frame",
choices=["No", "Yes"],
value="No"
)
gr.Markdown("### Note: If you want to use your own image as repainted first frame, please upload the image in below.")
# Custom image uploader (always visible)
mt_repaint_image = gr.File(
label="Custom Repaint Image",
file_types=["image"]
)
# Add run button for Motion Transfer tab
mt_run_btn = gr.Button("Run Motion Transfer", variant="primary", size="lg")
# Connect to process function
mt_run_btn.click(
fn=process_motion_transfer,
inputs=[
source, common_prompt,
mt_repaint_option, mt_repaint_image
],
outputs=[tracking_video, output_video]
)
# Camera Control tab
with gr.TabItem("Camera Control"):
gr.Markdown("## Camera Control")
cc_camera_motion = gr.Textbox(
label="Current Camera Motion Sequence",
placeholder="Your camera motion sequence will appear here...",
interactive=False
)
# Use tabs for different motion types
with gr.Tabs() as cc_motion_tabs:
# Translation tab
with gr.TabItem("Translation (trans)"):
with gr.Row():
cc_trans_x = gr.Slider(minimum=-1.0, maximum=1.0, value=0.0, step=0.05, label="X-axis Movement")
cc_trans_y = gr.Slider(minimum=-1.0, maximum=1.0, value=0.0, step=0.05, label="Y-axis Movement")
cc_trans_z = gr.Slider(minimum=-1.0, maximum=1.0, value=0.0, step=0.05, label="Z-axis Movement (depth)")
with gr.Row():
cc_trans_start = gr.Number(minimum=0, maximum=48, value=0, step=1, label="Start Frame", precision=0)
cc_trans_end = gr.Number(minimum=0, maximum=48, value=48, step=1, label="End Frame", precision=0)
cc_trans_note = gr.Markdown("""
**Translation Notes:**
- Positive X: Move right, Negative X: Move left
- Positive Y: Move down, Negative Y: Move up
- Positive Z: Zoom in, Negative Z: Zoom out
""")
# Add translation button in the Translation tab
cc_add_trans = gr.Button("Add Camera Translation", variant="secondary")
# Function to add translation motion
def add_translation_motion(current_motion, trans_x, trans_y, trans_z, trans_start, trans_end):
# Format: trans dx dy dz [start_frame end_frame]
frame_range = f" {int(trans_start)} {int(trans_end)}" if trans_start != 0 or trans_end != 48 else ""
new_motion = f"trans {trans_x:.2f} {trans_y:.2f} {trans_z:.2f}{frame_range}"
# Append to existing motion string with semicolon separator if needed
if current_motion and current_motion.strip():
updated_motion = f"{current_motion}; {new_motion}"
else:
updated_motion = new_motion
return updated_motion
# Connect translation button
cc_add_trans.click(
fn=add_translation_motion,
inputs=[
cc_camera_motion,
cc_trans_x, cc_trans_y, cc_trans_z, cc_trans_start, cc_trans_end
],
outputs=[cc_camera_motion]
)
# Rotation tab
with gr.TabItem("Rotation (rot)"):
with gr.Row():
cc_rot_axis = gr.Dropdown(choices=["x", "y", "z"], value="y", label="Rotation Axis")
cc_rot_angle = gr.Slider(minimum=-30, maximum=30, value=5, step=1, label="Rotation Angle (degrees)")
with gr.Row():
cc_rot_start = gr.Number(minimum=0, maximum=48, value=0, step=1, label="Start Frame", precision=0)
cc_rot_end = gr.Number(minimum=0, maximum=48, value=48, step=1, label="End Frame", precision=0)
cc_rot_note = gr.Markdown("""
**Rotation Notes:**
- X-axis rotation: Tilt camera up/down
- Y-axis rotation: Pan camera left/right
- Z-axis rotation: Roll camera
""")
# Add rotation button in the Rotation tab
cc_add_rot = gr.Button("Add Camera Rotation", variant="secondary")
# Function to add rotation motion
def add_rotation_motion(current_motion, rot_axis, rot_angle, rot_start, rot_end):
# Format: rot axis angle [start_frame end_frame]
frame_range = f" {int(rot_start)} {int(rot_end)}" if rot_start != 0 or rot_end != 48 else ""
new_motion = f"rot {rot_axis} {rot_angle}{frame_range}"
# Append to existing motion string with semicolon separator if needed
if current_motion and current_motion.strip():
updated_motion = f"{current_motion}; {new_motion}"
else:
updated_motion = new_motion
return updated_motion
# Connect rotation button
cc_add_rot.click(
fn=add_rotation_motion,
inputs=[
cc_camera_motion,
cc_rot_axis, cc_rot_angle, cc_rot_start, cc_rot_end
],
outputs=[cc_camera_motion]
)
# Add a clear button to reset the motion sequence
cc_clear_motion = gr.Button("Clear All Motions", variant="stop")
def clear_camera_motion():
return ""
cc_clear_motion.click(
fn=clear_camera_motion,
inputs=[],
outputs=[cc_camera_motion]
)
cc_tracking_method = gr.Radio(
label="Tracking Method",
choices=["moge", "cotracker"],
value="cotracker"
)
# Add run button for Camera Control tab
cc_run_btn = gr.Button("Run Camera Control", variant="primary", size="lg")
# Connect to process function
cc_run_btn.click(
fn=process_camera_control,
inputs=[
source, common_prompt,
cc_camera_motion, cc_tracking_method
],
outputs=[tracking_video, output_video]
)
# Object Manipulation tab
with gr.TabItem("Object Manipulation"):
gr.Markdown("## Object Manipulation")
om_object_mask = gr.File(
label="Object Mask Image",
file_types=["image"]
)
gr.Markdown("Upload a binary mask image, white areas indicate the object to manipulate")
om_object_motion = gr.Dropdown(
label="Object Motion Type",
choices=["up", "down", "left", "right", "front", "back", "rot"],
value="up"
)
om_tracking_method = gr.Radio(
label="Tracking Method",
choices=["moge", "cotracker"],
value="cotracker"
)
# Add run button for Object Manipulation tab
om_run_btn = gr.Button("Run Object Manipulation", variant="primary", size="lg")
# Connect to process function
om_run_btn.click(
fn=process_object_manipulation,
inputs=[
source, common_prompt,
om_object_motion, om_object_mask, om_tracking_method
],
outputs=[tracking_video, output_video]
)
# Animating meshes to video tab
with gr.TabItem("Animating meshes to video"):
gr.Markdown("## Mesh Animation to Video")
gr.Markdown("""
Note: Currently only supports tracking videos generated with Blender (version > 4.0).
Please run the script `scripts/blender.py` in your Blender project to generate tracking videos.
""")
ma_tracking_video = gr.File(
label="Tracking Video",
file_types=["video"]
)
gr.Markdown("Tracking video needs to be generated from Blender")
# Simplified controls - Radio buttons for Yes/No and separate file upload
with gr.Row():
ma_repaint_option = gr.Radio(
label="Repaint First Frame",
choices=["No", "Yes"],
value="No"
)
gr.Markdown("### Note: If you want to use your own image as repainted first frame, please upload the image in below.")
# Custom image uploader (always visible)
ma_repaint_image = gr.File(
label="Custom Repaint Image",
file_types=["image"]
)
# Add run button for Mesh Animation tab
ma_run_btn = gr.Button("Run Mesh Animation", variant="primary", size="lg")
# Connect to process function
ma_run_btn.click(
fn=process_mesh_animation,
inputs=[
source, common_prompt,
ma_tracking_video, ma_repaint_option, ma_repaint_image
],
outputs=[tracking_video, output_video]
)
# Launch interface
if __name__ == "__main__":
print(f"Using GPU: {GPU_ID}")
print(f"Web UI will start on port {args.port}")
if args.share:
print("Creating public link for remote access")
# Launch interface
demo.launch(share=args.share, server_port=args.port)