File size: 14,680 Bytes
a248e18 babb493 a248e18 e1a9f6f babb493 e1a9f6f a248e18 e1a9f6f a248e18 e1a9f6f a248e18 0a88016 e1a9f6f 0a88016 e1a9f6f 0a88016 babb493 e1a9f6f f2cec3a 4d2bd73 a248e18 1452cfe a248e18 babb493 e1a9f6f babb493 e1a9f6f a248e18 aeacff6 48a14e4 aeacff6 a248e18 e1a9f6f a248e18 aeacff6 e1a9f6f aeacff6 babb493 e1a9f6f babb493 e1a9f6f babb493 e1a9f6f babb493 e1a9f6f babb493 e1a9f6f babb493 e1a9f6f babb493 e1a9f6f babb493 e1a9f6f babb493 e1a9f6f babb493 a248e18 e1a9f6f a248e18 e1a9f6f aeacff6 a248e18 e1a9f6f aeacff6 a248e18 e1a9f6f a248e18 aeacff6 a248e18 e1a9f6f a248e18 e1a9f6f a248e18 aeacff6 a248e18 aeacff6 e1a9f6f aeacff6 e1a9f6f aeacff6 e1a9f6f aeacff6 db07a3a 62b5323 e6292a4 e1a9f6f e6292a4 e1a9f6f db07a3a e1a9f6f 6fefd54 e1a9f6f a248e18 e1a9f6f a248e18 e1a9f6f a248e18 e1a9f6f a248e18 aeacff6 e1a9f6f a248e18 e1a9f6f 6fefd54 e6292a4 e1a9f6f a248e18 e6292a4 a248e18 e1a9f6f a248e18 aeacff6 a248e18 6fefd54 e1a9f6f a248e18 e6292a4 a248e18 6fefd54 a248e18 aeacff6 6fefd54 aeacff6 e1a9f6f a248e18 e1a9f6f a248e18 e1a9f6f a248e18 6fefd54 a248e18 6fefd54 a248e18 ab740c4 e1a9f6f ab740c4 e1a9f6f ab740c4 e1a9f6f ab740c4 e1a9f6f ab740c4 e1a9f6f ab740c4 e1a9f6f ab740c4 e1a9f6f ab740c4 e1a9f6f ab740c4 e1a9f6f ab740c4 e1a9f6f ab740c4 e1a9f6f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 |
# -*- coding: utf-8 -*-
"""
Salama Assistant โ fixed full app.py with PEFT adapter loading (base + adapter)
Drop this file into your Hugging Face Space (replace your existing app.py).
Requirements:
- transformers
- peft
- onnxruntime
- librosa
- huggingface_hub
- gradio
Note: install `peft` (e.g. add to requirements.txt: "peft>=0.4.0") or pip install in your environment.
"""
import os
import json
import tempfile
import threading
import numpy as np
import gradio as gr
import librosa
import torch
from scipy.io.wavfile import write as write_wav
from huggingface_hub import login
import onnxruntime
from transformers import (
AutoProcessor,
AutoModelForSpeechSeq2Seq,
AutoTokenizer,
AutoConfig,
AutoModelForCausalLM,
pipeline,
TextIteratorStreamer,
)
# PEFT imports
from peft import PeftModel, PeftConfig
# -------------------- Configuration --------------------
STT_MODEL_ID = "EYEDOL/SALAMA_C3"
ADAPTER_REPO_ID = "EYEDOL/Llama-3.2-3b_ON_ALPACA5" # adapter-only repo
BASE_MODEL_ID = "unsloth/Llama-3.2-3B-Instruct" # full base model referenced by adapter
TTS_TOKENIZER_ID = "facebook/mms-tts-swh"
TTS_ONNX_MODEL_PATH = "swahili_tts.onnx"
TEMP_DIR = "temp"
os.makedirs(TEMP_DIR, exist_ok=True)
# Use HF token from env; Spaces normally provide HF_TOKEN
HF_TOKEN = os.environ.get("HF_TOKEN") or os.environ.get("hugface")
if not HF_TOKEN:
print("Warning: HF_TOKEN not found in env. Public models may still load, but private repos require a token.")
else:
try:
login(token=HF_TOKEN)
print("Successfully logged into Hugging Face Hub!")
except Exception as e:
print("Warning: huggingface_hub.login() failed:", e)
class WeeboAssistant:
def __init__(self):
self.STT_SAMPLE_RATE = 16000
self.TTS_SAMPLE_RATE = 16000
self.SYSTEM_PROMPT = (
"Wewe ni msaidizi mwenye akili, jibu swali lililoulizwa KWA UFUPI na kwa usahihi kwa sauti ya mazungumzo. "
"Jibu kwa lugha ya Kiswahili pekee. Hakuna jibu refu."
)
self._init_models()
def _init_models(self):
print("Initializing models...")
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.torch_dtype = torch.bfloat16 if self.device == "cuda" else torch.float32
print(f"Using device: {self.device}")
# ---------------- STT ----------------
print(f"Loading STT model: {STT_MODEL_ID}")
self.stt_processor = AutoProcessor.from_pretrained(STT_MODEL_ID)
self.stt_model = AutoModelForSpeechSeq2Seq.from_pretrained(
STT_MODEL_ID,
torch_dtype=self.torch_dtype,
low_cpu_mem_usage=True,
use_safetensors=True,
)
if self.device == "cuda":
try:
self.stt_model = self.stt_model.to("cuda")
except Exception:
pass
print("STT model loaded successfully.")
# ---------------- LLM (base + PEFT adapter) ----------------
print(f"Loading base LLM: {BASE_MODEL_ID} and applying adapter: {ADAPTER_REPO_ID}")
# 1) Tokenizer: prefer base tokenizer
try:
self.llm_tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL_ID, use_fast=True)
except Exception as e:
print("Warning: could not load base tokenizer, falling back to adapter tokenizer. Error:", e)
self.llm_tokenizer = AutoTokenizer.from_pretrained(ADAPTER_REPO_ID, use_fast=True)
# 2) Load base model
device_map = "auto" if torch.cuda.is_available() else None
try:
self.llm_model = AutoModelForCausalLM.from_pretrained(
BASE_MODEL_ID,
torch_dtype=self.torch_dtype,
low_cpu_mem_usage=True,
device_map=device_map,
trust_remote_code=True,
)
except Exception as e:
# Helpful error info and hint
raise RuntimeError(
"Failed to load base model. Ensure the base model ID is correct and the HF_TOKEN has access if private. Error: "
+ str(e)
)
# 3) Load and apply PEFT adapter (adapter-only repo)
try:
# This discovers adapter config (adapter_config.json) and applies weights
peft_config = PeftConfig.from_pretrained(ADAPTER_REPO_ID)
self.llm_model = PeftModel.from_pretrained(
self.llm_model,
ADAPTER_REPO_ID,
device_map=device_map,
torch_dtype=self.torch_dtype,
low_cpu_mem_usage=True,
)
except Exception as e:
raise RuntimeError(
"Failed to load/apply PEFT adapter from adapter repo. Make sure adapter files (adapter_config.json and adapter_model.safetensors) are present and HF_TOKEN has access if private. Error: "
+ str(e)
)
# 4) Optionally create a non-streaming pipeline for quick tests
try:
device_index = 0 if torch.cuda.is_available() else -1
self.llm_pipeline = pipeline(
"text-generation",
model=self.llm_model,
tokenizer=self.llm_tokenizer,
device=device_index,
model_kwargs={"torch_dtype": self.torch_dtype},
)
except Exception as e:
print("Warning: could not create text-generation pipeline. Streaming generate will still work. Error:", e)
self.llm_pipeline = None
print("LLM base + adapter loaded successfully.")
# ---------------- TTS ----------------
print(f"Loading TTS model: {TTS_ONNX_MODEL_PATH}")
providers = ["CPUExecutionProvider"]
if torch.cuda.is_available():
providers = ["CUDAExecutionProvider", "CPUExecutionProvider"]
self.tts_session = onnxruntime.InferenceSession(TTS_ONNX_MODEL_PATH, providers=providers)
self.tts_tokenizer = AutoTokenizer.from_pretrained(TTS_TOKENIZER_ID)
print("TTS model and tokenizer loaded successfully.")
print("-" * 30)
print("All models initialized successfully! โ
")
# ---------------- Utility methods ----------------
def transcribe_audio(self, audio_tuple):
if audio_tuple is None:
return ""
sample_rate, audio_data = audio_tuple
if audio_data.ndim > 1:
audio_data = audio_data.mean(axis=1)
if audio_data.dtype != np.float32:
if np.issubdtype(audio_data.dtype, np.integer):
max_val = np.iinfo(audio_data.dtype).max
audio_data = audio_data.astype(np.float32) / float(max_val)
else:
audio_data = audio_data.astype(np.float32)
if sample_rate != self.STT_SAMPLE_RATE:
audio_data = librosa.resample(y=audio_data, orig_sr=sample_rate, target_sr=self.STT_SAMPLE_RATE)
if len(audio_data) < 1000:
return "(Audio too short to transcribe)"
inputs = self.stt_processor(audio_data, sampling_rate=self.STT_SAMPLE_RATE, return_tensors="pt")
inputs = {k: v.to(next(self.stt_model.parameters()).device) for k, v in inputs.items()}
with torch.no_grad():
generated_ids = self.stt_model.generate(**inputs, max_new_tokens=128)
transcription = self.stt_processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
return transcription.strip()
def generate_speech(self, text):
if not text:
return None
text = text.strip()
inputs = self.tts_tokenizer(text, return_tensors="np")
input_name = self.tts_session.get_inputs()[0].name
ort_inputs = {input_name: inputs["input_ids"]}
audio_waveform = self.tts_session.run(None, ort_inputs)[0].flatten()
if np.issubdtype(audio_waveform.dtype, np.floating):
audio_clip = np.clip(audio_waveform, -1.0, 1.0)
audio_int16 = (audio_clip * 32767).astype(np.int16)
else:
audio_int16 = audio_waveform.astype(np.int16)
output_path = os.path.join(TEMP_DIR, f"{os.urandom(8).hex()}.wav")
write_wav(output_path, self.TTS_SAMPLE_RATE, audio_int16)
return output_path
def get_llm_response(self, chat_history):
prompt_lines = [self.SYSTEM_PROMPT.strip(),
"" # Empty string or add intended string content here
]
for user_msg, assistant_msg in chat_history:
if user_msg:
prompt_lines.append("User: " + user_msg)
if assistant_msg:
prompt_lines.append("Assistant: " + assistant_msg)
prompt_lines.append("Assistant: ")
prompt = "".join(prompt_lines)
inputs = self.llm_tokenizer(prompt, return_tensors="pt")
try:
model_device = next(self.llm_model.parameters()).device
except StopIteration:
model_device = torch.device("cpu")
inputs = {k: v.to(model_device) for k, v in inputs.items()}
streamer = TextIteratorStreamer(self.llm_tokenizer, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = dict(
input_ids=inputs["input_ids"],
attention_mask=inputs.get("attention_mask", None),
max_new_tokens=512,
do_sample=True,
temperature=0.6,
top_p=0.9,
streamer=streamer,
eos_token_id=getattr(self.llm_tokenizer, "eos_token_id", None),
)
gen_thread = threading.Thread(target=self.llm_model.generate, kwargs=generation_kwargs, daemon=True)
gen_thread.start()
return streamer
# -------------------- Create assistant instance --------------------
assistant = WeeboAssistant()
# -------------------- Gradio pipelines --------------------
def s2s_pipeline(audio_input, chat_history):
user_text = assistant.transcribe_audio(audio_input)
if not user_text or user_text.startswith("("):
chat_history.append((user_text or "(No valid speech detected)", None))
yield chat_history, None, "Please record your voice again."
return
chat_history.append((user_text, ""))
yield chat_history, None, "..."
response_stream = assistant.get_llm_response(chat_history)
llm_response_text = ""
for text_chunk in response_stream:
llm_response_text += text_chunk
chat_history[-1] = (user_text, llm_response_text)
yield chat_history, None, llm_response_text
final_audio_path = assistant.generate_speech(llm_response_text)
yield chat_history, final_audio_path, llm_response_text
def t2t_pipeline(text_input, chat_history):
chat_history.append((text_input, ""))
yield chat_history
response_stream = assistant.get_llm_response(chat_history)
llm_response_text = ""
for text_chunk in response_stream:
llm_response_text += text_chunk
chat_history[-1] = (text_input, llm_response_text)
yield chat_history
def clear_textbox():
return gr.Textbox(value="")
# -------------------- Gradio UI --------------------
with gr.Blocks(theme=gr.themes.Soft(), title="Msaidizi wa Kiswahili") as demo:
gr.Markdown("# ๐ค Msaidizi wa Sauti wa Kiswahili (Swahili Voice Assistant)")
gr.Markdown("Ongea na msaidizi kwa Kiswahili. Toa sauti, andika maandishi, na upate majibu kwa sauti au maandishi.")
with gr.Tabs():
with gr.TabItem("๐๏ธ Sauti-kwa-Sauti (Speech-to-Speech)"):
with gr.Row():
with gr.Column(scale=2):
s2s_audio_in = gr.Audio(sources=["microphone"], type="numpy", label="Ongea Hapa (Speak Here)")
s2s_submit_btn = gr.Button("Tuma (Submit)", variant="primary")
with gr.Column(scale=3):
s2s_chatbot = gr.Chatbot(label="Mazungumzo (Conversation)", bubble_full_width=False, height=400)
s2s_audio_out = gr.Audio(type="filepath", label="Jibu la Sauti (Audio Response)", autoplay=True)
s2s_text_out = gr.Textbox(label="Jibu la Maandishi (Text Response)", interactive=False)
with gr.TabItem("โจ๏ธ Maandishi-kwa-Maandishi (Text-to-Text)"):
t2t_chatbot = gr.Chatbot(label="Mazungumzo (Conversation)", bubble_full_width=False, height=500)
with gr.Row():
t2t_text_in = gr.Textbox(show_label=False, placeholder="Habari yako...", scale=4, container=False)
t2t_submit_btn = gr.Button("Tuma (Submit)", variant="primary", scale=1)
with gr.TabItem("๐ ๏ธ Zana (Tools)"):
with gr.Row():
with gr.Column():
gr.Markdown("### Unukuzi wa Sauti (Speech Transcription)")
tool_s2t_audio_in = gr.Audio(sources=["microphone", "upload"], type="numpy", label="Sauti ya Kuingiza (Input Audio)")
tool_s2t_text_out = gr.Textbox(label="Maandishi Yaliyonukuliwa (Transcribed Text)", interactive=False)
tool_s2t_btn = gr.Button("Nukuu (Transcribe)")
with gr.Column():
gr.Markdown("### Utengenezaji wa Sauti (Speech Synthesis)")
tool_t2s_text_in = gr.Textbox(label="Maandishi ya Kuingiza (Input Text)", placeholder="Andika Kiswahili hapa...")
tool_t2s_audio_out = gr.Audio(type="filepath", label="Sauti Iliyotengenezwa (Synthesized Audio)", autoplay=False)
tool_t2s_btn = gr.Button("Tengeneza Sauti (Synthesize)")
s2s_submit_btn.click(
fn=s2s_pipeline,
inputs=[s2s_audio_in, s2s_chatbot],
outputs=[s2s_chatbot, s2s_audio_out, s2s_text_out],
queue=True,
).then(
fn=lambda: gr.Audio(value=None),
inputs=None,
outputs=s2s_audio_in,
)
t2t_submit_btn.click(
fn=t2t_pipeline,
inputs=[t2t_text_in, t2t_chatbot],
outputs=[t2t_chatbot],
queue=True,
).then(
fn=clear_textbox,
inputs=None,
outputs=t2t_text_in,
)
t2t_text_in.submit(
fn=t2t_pipeline,
inputs=[t2t_text_in, t2t_chatbot],
outputs=[t2t_chatbot],
queue=True,
).then(
fn=clear_textbox,
inputs=None,
outputs=t2t_text_in,
)
tool_s2t_btn.click(
fn=assistant.transcribe_audio,
inputs=tool_s2t_audio_in,
outputs=tool_s2t_text_out,
queue=True,
)
tool_t2s_btn.click(
fn=assistant.generate_speech,
inputs=tool_t2s_text_in,
outputs=tool_t2s_audio_out,
queue=True,
)
demo.queue().launch(debug=True)
|