Spaces:
Sleeping
Sleeping
Update main.py
Browse files
main.py
CHANGED
|
@@ -1,62 +1,67 @@
|
|
| 1 |
from flask import Flask, request, jsonify
|
| 2 |
import torch
|
| 3 |
-
from transformers import RobertaTokenizer
|
| 4 |
import os
|
| 5 |
-
from transformers import RobertaForSequenceClassification
|
| 6 |
-
import torch.serialization
|
| 7 |
-
# Initialize Flask app
|
| 8 |
-
app = Flask(__name__)
|
| 9 |
-
|
| 10 |
-
# Load the trained model and tokenizer
|
| 11 |
-
tokenizer = RobertaTokenizer.from_pretrained("microsoft/codebert-base")
|
| 12 |
-
torch.serialization.add_safe_globals([RobertaForSequenceClassification])
|
| 13 |
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
# Ensure the model is in evaluation mode
|
| 17 |
-
model.eval()
|
| 18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
@app.route("/")
|
| 21 |
def home():
|
| 22 |
return request.url
|
| 23 |
|
| 24 |
-
|
| 25 |
-
# @app.route("/predict", methods=["POST"])
|
| 26 |
-
@app.route("/predict")
|
| 27 |
def predict():
|
| 28 |
try:
|
| 29 |
-
#
|
| 30 |
-
print("Received code:", request.get_json()["code"])
|
| 31 |
-
|
| 32 |
data = request.get_json()
|
| 33 |
if "code" not in data:
|
| 34 |
return jsonify({"error": "Missing 'code' parameter"}), 400
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
# Tokenize
|
| 39 |
inputs = tokenizer(
|
| 40 |
-
|
| 41 |
-
return_tensors='pt',
|
| 42 |
truncation=True,
|
| 43 |
padding='max_length',
|
| 44 |
-
max_length=512
|
|
|
|
| 45 |
)
|
| 46 |
-
|
| 47 |
-
# Make prediction
|
| 48 |
with torch.no_grad():
|
| 49 |
outputs = model(**inputs)
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
return jsonify({
|
| 55 |
-
|
|
|
|
|
|
|
|
|
|
| 56 |
except Exception as e:
|
| 57 |
return jsonify({"error": str(e)}), 500
|
| 58 |
|
| 59 |
-
|
| 60 |
-
# Run the Flask app
|
| 61 |
if __name__ == "__main__":
|
| 62 |
-
|
|
|
|
| 1 |
from flask import Flask, request, jsonify
|
| 2 |
import torch
|
| 3 |
+
from transformers import RobertaTokenizer, RobertaForSequenceClassification, RobertaConfig
|
| 4 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
+
app = Flask(__name__)
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
+
# Load model and tokenizer
|
| 9 |
+
def load_model():
|
| 10 |
+
# Load saved config and weights
|
| 11 |
+
checkpoint = torch.load("codebert_readability_scorer.pth", map_location=torch.device('cpu'))
|
| 12 |
+
config = RobertaConfig.from_dict(checkpoint['config'])
|
| 13 |
+
|
| 14 |
+
# Initialize model with loaded config
|
| 15 |
+
model = RobertaForSequenceClassification(config)
|
| 16 |
+
model.load_state_dict(checkpoint['model_state_dict'])
|
| 17 |
+
model.eval()
|
| 18 |
+
return model
|
| 19 |
+
|
| 20 |
+
# Load components
|
| 21 |
+
try:
|
| 22 |
+
tokenizer = RobertaTokenizer.from_pretrained("./tokenizer")
|
| 23 |
+
model = load_model()
|
| 24 |
+
print("Model and tokenizer loaded successfully!")
|
| 25 |
+
except Exception as e:
|
| 26 |
+
print(f"Error loading model: {str(e)}")
|
| 27 |
|
| 28 |
@app.route("/")
|
| 29 |
def home():
|
| 30 |
return request.url
|
| 31 |
|
| 32 |
+
@app.route("/predict", methods=["POST"])
|
|
|
|
|
|
|
| 33 |
def predict():
|
| 34 |
try:
|
| 35 |
+
# Get code from request
|
|
|
|
|
|
|
| 36 |
data = request.get_json()
|
| 37 |
if "code" not in data:
|
| 38 |
return jsonify({"error": "Missing 'code' parameter"}), 400
|
| 39 |
+
|
| 40 |
+
code = data["code"]
|
| 41 |
+
|
| 42 |
+
# Tokenize input
|
| 43 |
inputs = tokenizer(
|
| 44 |
+
code,
|
|
|
|
| 45 |
truncation=True,
|
| 46 |
padding='max_length',
|
| 47 |
+
max_length=512,
|
| 48 |
+
return_tensors='pt'
|
| 49 |
)
|
| 50 |
+
|
| 51 |
+
# Make prediction
|
| 52 |
with torch.no_grad():
|
| 53 |
outputs = model(**inputs)
|
| 54 |
+
|
| 55 |
+
# Apply sigmoid and format score
|
| 56 |
+
score = torch.sigmoid(outputs.logits).item()
|
| 57 |
+
|
| 58 |
+
return jsonify({
|
| 59 |
+
"readability_score": round(score, 4),
|
| 60 |
+
"processed_code": code[:500] + "..." if len(code) > 500 else code
|
| 61 |
+
})
|
| 62 |
+
|
| 63 |
except Exception as e:
|
| 64 |
return jsonify({"error": str(e)}), 500
|
| 65 |
|
|
|
|
|
|
|
| 66 |
if __name__ == "__main__":
|
| 67 |
+
app.run(host="0.0.0.0", port=7860)
|