correct imple., minor fixes
Browse files- src/f5_tts/model/backbones/dit.py +27 -22
- src/f5_tts/model/backbones/mmdit.py +38 -14
- src/f5_tts/model/backbones/unett.py +37 -14
- src/f5_tts/model/cfm.py +5 -6
src/f5_tts/model/backbones/dit.py
CHANGED
@@ -182,10 +182,16 @@ class DiT(nn.Module):
|
|
182 |
|
183 |
return ckpt_forward
|
184 |
|
185 |
-
def
|
186 |
-
self
|
187 |
-
|
188 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
189 |
if cache:
|
190 |
if drop_text:
|
191 |
if self.text_uncond is None:
|
@@ -197,7 +203,13 @@ class DiT(nn.Module):
|
|
197 |
text_embed = self.text_cond
|
198 |
else:
|
199 |
text_embed = self.text_embed(text, seq_len, drop_text=drop_text)
|
200 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
201 |
|
202 |
def forward(
|
203 |
self,
|
@@ -205,11 +217,11 @@ class DiT(nn.Module):
|
|
205 |
cond: float["b n d"], # masked cond audio # noqa: F722
|
206 |
text: int["b nt"], # text # noqa: F722
|
207 |
time: float["b"] | float[""], # time step # noqa: F821 F722
|
208 |
-
drop_audio_cond, # cfg for cond audio
|
209 |
-
drop_text, # cfg for text
|
210 |
-
batch_cfg=False, # batch cfg compute
|
211 |
mask: bool["b n"] | None = None, # noqa: F722
|
212 |
-
|
|
|
|
|
|
|
213 |
):
|
214 |
batch, seq_len = x.shape[0], x.shape[1]
|
215 |
if time.ndim == 0:
|
@@ -217,21 +229,14 @@ class DiT(nn.Module):
|
|
217 |
|
218 |
# t: conditioning time, text: text, x: noised audio + cond audio + text
|
219 |
t = self.time_embed(time)
|
220 |
-
if
|
221 |
-
|
222 |
-
|
223 |
-
)
|
224 |
-
text_embed_uncond = self.get_text_embed(
|
225 |
-
text, seq_len, drop_text=True, cache=cache
|
226 |
-
)
|
227 |
-
x_cond = self.input_embed(x, cond, text_embed_cond, drop_audio_cond=False)
|
228 |
-
x_uncond = self.input_embed(
|
229 |
-
x, cond, text_embed_uncond, drop_audio_cond=True
|
230 |
-
)
|
231 |
x = torch.cat((x_cond, x_uncond), dim=0)
|
|
|
|
|
232 |
else:
|
233 |
-
|
234 |
-
x = self.input_embed(x, cond, text_embed, drop_audio_cond=drop_audio_cond)
|
235 |
|
236 |
rope = self.rotary_embed.forward_from_seq_len(seq_len)
|
237 |
|
|
|
182 |
|
183 |
return ckpt_forward
|
184 |
|
185 |
+
def get_input_embed(
|
186 |
+
self,
|
187 |
+
x, # b n d
|
188 |
+
cond, # b n d
|
189 |
+
text, # b nt
|
190 |
+
drop_audio_cond: bool = False,
|
191 |
+
drop_text: bool = False,
|
192 |
+
cache: bool = True,
|
193 |
+
):
|
194 |
+
seq_len = x.shape[1]
|
195 |
if cache:
|
196 |
if drop_text:
|
197 |
if self.text_uncond is None:
|
|
|
203 |
text_embed = self.text_cond
|
204 |
else:
|
205 |
text_embed = self.text_embed(text, seq_len, drop_text=drop_text)
|
206 |
+
|
207 |
+
x = self.input_embed(x, cond, text_embed, drop_audio_cond=drop_audio_cond)
|
208 |
+
|
209 |
+
return x
|
210 |
+
|
211 |
+
def clear_cache(self):
|
212 |
+
self.text_cond, self.text_uncond = None, None
|
213 |
|
214 |
def forward(
|
215 |
self,
|
|
|
217 |
cond: float["b n d"], # masked cond audio # noqa: F722
|
218 |
text: int["b nt"], # text # noqa: F722
|
219 |
time: float["b"] | float[""], # time step # noqa: F821 F722
|
|
|
|
|
|
|
220 |
mask: bool["b n"] | None = None, # noqa: F722
|
221 |
+
drop_audio_cond: bool = False, # cfg for cond audio
|
222 |
+
drop_text: bool = False, # cfg for text
|
223 |
+
cfg_infer: bool = False, # cfg inference, pack cond & uncond forward
|
224 |
+
cache: bool = False,
|
225 |
):
|
226 |
batch, seq_len = x.shape[0], x.shape[1]
|
227 |
if time.ndim == 0:
|
|
|
229 |
|
230 |
# t: conditioning time, text: text, x: noised audio + cond audio + text
|
231 |
t = self.time_embed(time)
|
232 |
+
if cfg_infer: # pack cond & uncond forward: b n d -> 2b n d
|
233 |
+
x_cond = self.get_input_embed(x, cond, text, drop_audio_cond=False, drop_text=False, cache=cache)
|
234 |
+
x_uncond = self.get_input_embed(x, cond, text, drop_audio_cond=True, drop_text=True, cache=cache)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
235 |
x = torch.cat((x_cond, x_uncond), dim=0)
|
236 |
+
t = torch.cat((t, t), dim=0)
|
237 |
+
mask = torch.cat((mask, mask), dim=0) if mask is not None else None
|
238 |
else:
|
239 |
+
x = self.get_input_embed(x, cond, text, drop_audio_cond=drop_audio_cond, drop_text=drop_text, cache=cache)
|
|
|
240 |
|
241 |
rope = self.rotary_embed.forward_from_seq_len(seq_len)
|
242 |
|
src/f5_tts/model/backbones/mmdit.py
CHANGED
@@ -141,6 +141,30 @@ class MMDiT(nn.Module):
|
|
141 |
nn.init.constant_(self.proj_out.weight, 0)
|
142 |
nn.init.constant_(self.proj_out.bias, 0)
|
143 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
def clear_cache(self):
|
145 |
self.text_cond, self.text_uncond = None, None
|
146 |
|
@@ -150,10 +174,11 @@ class MMDiT(nn.Module):
|
|
150 |
cond: float["b n d"], # masked cond audio # noqa: F722
|
151 |
text: int["b nt"], # text # noqa: F722
|
152 |
time: float["b"] | float[""], # time step # noqa: F821 F722
|
153 |
-
drop_audio_cond, # cfg for cond audio
|
154 |
-
drop_text, # cfg for text
|
155 |
mask: bool["b n"] | None = None, # noqa: F722
|
156 |
-
|
|
|
|
|
|
|
157 |
):
|
158 |
batch = x.shape[0]
|
159 |
if time.ndim == 0:
|
@@ -161,18 +186,17 @@ class MMDiT(nn.Module):
|
|
161 |
|
162 |
# t: conditioning (time), c: context (text + masked cond audio), x: noised input audio
|
163 |
t = self.time_embed(time)
|
164 |
-
if
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
self.text_cond = self.text_embed(text, drop_text=False)
|
172 |
-
c = self.text_cond
|
173 |
else:
|
174 |
-
c = self.
|
175 |
-
|
|
|
176 |
|
177 |
seq_len = x.shape[1]
|
178 |
text_len = text.shape[1]
|
|
|
141 |
nn.init.constant_(self.proj_out.weight, 0)
|
142 |
nn.init.constant_(self.proj_out.bias, 0)
|
143 |
|
144 |
+
def get_input_embed(
|
145 |
+
self,
|
146 |
+
x, # b n d
|
147 |
+
cond, # b n d
|
148 |
+
text, # b nt
|
149 |
+
drop_audio_cond: bool = False,
|
150 |
+
drop_text: bool = False,
|
151 |
+
cache: bool = True,
|
152 |
+
):
|
153 |
+
if cache:
|
154 |
+
if drop_text:
|
155 |
+
if self.text_uncond is None:
|
156 |
+
self.text_uncond = self.text_embed(text, drop_text=True)
|
157 |
+
c = self.text_uncond
|
158 |
+
else:
|
159 |
+
if self.text_cond is None:
|
160 |
+
self.text_cond = self.text_embed(text, drop_text=False)
|
161 |
+
c = self.text_cond
|
162 |
+
else:
|
163 |
+
c = self.text_embed(text, drop_text=drop_text)
|
164 |
+
x = self.audio_embed(x, cond, drop_audio_cond=drop_audio_cond)
|
165 |
+
|
166 |
+
return x, c
|
167 |
+
|
168 |
def clear_cache(self):
|
169 |
self.text_cond, self.text_uncond = None, None
|
170 |
|
|
|
174 |
cond: float["b n d"], # masked cond audio # noqa: F722
|
175 |
text: int["b nt"], # text # noqa: F722
|
176 |
time: float["b"] | float[""], # time step # noqa: F821 F722
|
|
|
|
|
177 |
mask: bool["b n"] | None = None, # noqa: F722
|
178 |
+
drop_audio_cond: bool = False, # cfg for cond audio
|
179 |
+
drop_text: bool = False, # cfg for text
|
180 |
+
cfg_infer: bool = False, # cfg inference, pack cond & uncond forward
|
181 |
+
cache: bool = False,
|
182 |
):
|
183 |
batch = x.shape[0]
|
184 |
if time.ndim == 0:
|
|
|
186 |
|
187 |
# t: conditioning (time), c: context (text + masked cond audio), x: noised input audio
|
188 |
t = self.time_embed(time)
|
189 |
+
if cfg_infer: # pack cond & uncond forward: b n d -> 2b n d
|
190 |
+
x_cond, c_cond = self.get_input_embed(x, cond, text, drop_audio_cond=False, drop_text=False, cache=cache)
|
191 |
+
x_uncond, c_uncond = self.get_input_embed(x, cond, text, drop_audio_cond=True, drop_text=True, cache=cache)
|
192 |
+
x = torch.cat((x_cond, x_uncond), dim=0)
|
193 |
+
c = torch.cat((c_cond, c_uncond), dim=0)
|
194 |
+
t = torch.cat((t, t), dim=0)
|
195 |
+
mask = torch.cat((mask, mask), dim=0) if mask is not None else None
|
|
|
|
|
196 |
else:
|
197 |
+
x, c = self.get_input_embed(
|
198 |
+
x, cond, text, drop_audio_cond=drop_audio_cond, drop_text=drop_text, cache=cache
|
199 |
+
)
|
200 |
|
201 |
seq_len = x.shape[1]
|
202 |
text_len = text.shape[1]
|
src/f5_tts/model/backbones/unett.py
CHANGED
@@ -178,6 +178,32 @@ class UNetT(nn.Module):
|
|
178 |
self.norm_out = RMSNorm(dim)
|
179 |
self.proj_out = nn.Linear(dim, mel_dim)
|
180 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
181 |
def clear_cache(self):
|
182 |
self.text_cond, self.text_uncond = None, None
|
183 |
|
@@ -187,10 +213,11 @@ class UNetT(nn.Module):
|
|
187 |
cond: float["b n d"], # masked cond audio # noqa: F722
|
188 |
text: int["b nt"], # text # noqa: F722
|
189 |
time: float["b"] | float[""], # time step # noqa: F821 F722
|
190 |
-
drop_audio_cond, # cfg for cond audio
|
191 |
-
drop_text, # cfg for text
|
192 |
mask: bool["b n"] | None = None, # noqa: F722
|
193 |
-
|
|
|
|
|
|
|
194 |
):
|
195 |
batch, seq_len = x.shape[0], x.shape[1]
|
196 |
if time.ndim == 0:
|
@@ -198,18 +225,14 @@ class UNetT(nn.Module):
|
|
198 |
|
199 |
# t: conditioning time, c: context (text + masked cond audio), x: noised input audio
|
200 |
t = self.time_embed(time)
|
201 |
-
if
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
else
|
207 |
-
if self.text_cond is None:
|
208 |
-
self.text_cond = self.text_embed(text, seq_len, drop_text=False)
|
209 |
-
text_embed = self.text_cond
|
210 |
else:
|
211 |
-
|
212 |
-
x = self.input_embed(x, cond, text_embed, drop_audio_cond=drop_audio_cond)
|
213 |
|
214 |
# postfix time t to input x, [b n d] -> [b n+1 d]
|
215 |
x = torch.cat([t.unsqueeze(1), x], dim=1) # pack t to x
|
|
|
178 |
self.norm_out = RMSNorm(dim)
|
179 |
self.proj_out = nn.Linear(dim, mel_dim)
|
180 |
|
181 |
+
def get_input_embed(
|
182 |
+
self,
|
183 |
+
x, # b n d
|
184 |
+
cond, # b n d
|
185 |
+
text, # b nt
|
186 |
+
drop_audio_cond: bool = False,
|
187 |
+
drop_text: bool = False,
|
188 |
+
cache: bool = True,
|
189 |
+
):
|
190 |
+
seq_len = x.shape[1]
|
191 |
+
if cache:
|
192 |
+
if drop_text:
|
193 |
+
if self.text_uncond is None:
|
194 |
+
self.text_uncond = self.text_embed(text, seq_len, drop_text=True)
|
195 |
+
text_embed = self.text_uncond
|
196 |
+
else:
|
197 |
+
if self.text_cond is None:
|
198 |
+
self.text_cond = self.text_embed(text, seq_len, drop_text=False)
|
199 |
+
text_embed = self.text_cond
|
200 |
+
else:
|
201 |
+
text_embed = self.text_embed(text, seq_len, drop_text=drop_text)
|
202 |
+
|
203 |
+
x = self.input_embed(x, cond, text_embed, drop_audio_cond=drop_audio_cond)
|
204 |
+
|
205 |
+
return x
|
206 |
+
|
207 |
def clear_cache(self):
|
208 |
self.text_cond, self.text_uncond = None, None
|
209 |
|
|
|
213 |
cond: float["b n d"], # masked cond audio # noqa: F722
|
214 |
text: int["b nt"], # text # noqa: F722
|
215 |
time: float["b"] | float[""], # time step # noqa: F821 F722
|
|
|
|
|
216 |
mask: bool["b n"] | None = None, # noqa: F722
|
217 |
+
drop_audio_cond: bool = False, # cfg for cond audio
|
218 |
+
drop_text: bool = False, # cfg for text
|
219 |
+
cfg_infer: bool = False, # cfg inference, pack cond & uncond forward
|
220 |
+
cache: bool = False,
|
221 |
):
|
222 |
batch, seq_len = x.shape[0], x.shape[1]
|
223 |
if time.ndim == 0:
|
|
|
225 |
|
226 |
# t: conditioning time, c: context (text + masked cond audio), x: noised input audio
|
227 |
t = self.time_embed(time)
|
228 |
+
if cfg_infer: # pack cond & uncond forward: b n d -> 2b n d
|
229 |
+
x_cond = self.get_input_embed(x, cond, text, drop_audio_cond=False, drop_text=False, cache=cache)
|
230 |
+
x_uncond = self.get_input_embed(x, cond, text, drop_audio_cond=True, drop_text=True, cache=cache)
|
231 |
+
x = torch.cat((x_cond, x_uncond), dim=0)
|
232 |
+
t = torch.cat((t, t), dim=0)
|
233 |
+
mask = torch.cat((mask, mask), dim=0) if mask is not None else None
|
|
|
|
|
|
|
234 |
else:
|
235 |
+
x = self.get_input_embed(x, cond, text, drop_audio_cond=drop_audio_cond, drop_text=drop_text, cache=cache)
|
|
|
236 |
|
237 |
# postfix time t to input x, [b n d] -> [b n+1 d]
|
238 |
x = torch.cat([t.unsqueeze(1), x], dim=1) # pack t to x
|
src/f5_tts/model/cfm.py
CHANGED
@@ -162,7 +162,7 @@ class CFM(nn.Module):
|
|
162 |
# at each step, conditioning is fixed
|
163 |
# step_cond = torch.where(cond_mask, cond, torch.zeros_like(cond))
|
164 |
|
165 |
-
# predict flow
|
166 |
if cfg_strength < 1e-5:
|
167 |
pred = self.transformer(
|
168 |
x=x,
|
@@ -176,18 +176,17 @@ class CFM(nn.Module):
|
|
176 |
)
|
177 |
return pred
|
178 |
|
179 |
-
|
|
|
180 |
x=x,
|
181 |
cond=step_cond,
|
182 |
text=text,
|
183 |
time=t,
|
184 |
mask=mask,
|
185 |
-
|
186 |
-
drop_text=False,
|
187 |
-
batch_cfg=True,
|
188 |
cache=True,
|
189 |
)
|
190 |
-
pred, null_pred = torch.chunk(
|
191 |
return pred + (pred - null_pred) * cfg_strength
|
192 |
|
193 |
# noise input
|
|
|
162 |
# at each step, conditioning is fixed
|
163 |
# step_cond = torch.where(cond_mask, cond, torch.zeros_like(cond))
|
164 |
|
165 |
+
# predict flow (cond)
|
166 |
if cfg_strength < 1e-5:
|
167 |
pred = self.transformer(
|
168 |
x=x,
|
|
|
176 |
)
|
177 |
return pred
|
178 |
|
179 |
+
# predict flow (cond and uncond), for classifier-free guidance
|
180 |
+
pred_cfg = self.transformer(
|
181 |
x=x,
|
182 |
cond=step_cond,
|
183 |
text=text,
|
184 |
time=t,
|
185 |
mask=mask,
|
186 |
+
cfg_infer=True,
|
|
|
|
|
187 |
cache=True,
|
188 |
)
|
189 |
+
pred, null_pred = torch.chunk(pred_cfg, 2, dim=0)
|
190 |
return pred + (pred - null_pred) * cfg_strength
|
191 |
|
192 |
# noise input
|