File size: 4,925 Bytes
bc94d2b
5487b58
913fbb4
2910afc
bc94d2b
 
 
 
 
913fbb4
bc94d2b
 
 
 
 
 
913fbb4
bc94d2b
 
 
913fbb4
bc94d2b
913fbb4
bc94d2b
913fbb4
 
 
bc94d2b
 
 
 
 
 
 
 
913fbb4
 
 
 
 
 
 
 
 
 
 
 
 
 
bc94d2b
913fbb4
 
 
bc94d2b
 
913fbb4
 
 
bc94d2b
 
 
 
 
 
 
 
 
2910afc
bc94d2b
 
 
 
 
2910afc
bc94d2b
6d75aa3
 
 
be99e76
bc94d2b
 
 
 
 
 
 
 
 
 
 
be99e76
bc94d2b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import streamlit as st
import requests
import Levenshtein
import time
from io import BytesIO
import librosa
import torch
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
from audio_recorder_streamlit import audio_recorder

@st.cache_resource
def load_model():
    MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-arabic"
    processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
    model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)
    return processor, model

processor, model = load_model()

def transcribe_audio_hf(audio_bytes):
    """
    Transcribes speech from an audio file using a pretrained Wav2Vec2 model.
    Args:
        audio_bytes (bytes): Audio data in bytes.
    Returns:
        str: The transcription of the speech in the audio file.
    """
    speech_array, sampling_rate = librosa.load(BytesIO(audio_bytes), sr=16000)
    input_values = processor(speech_array, sampling_rate=sampling_rate, return_tensors="pt", padding=True).input_values
    with torch.no_grad():
        logits = model(input_values).logits
    predicted_ids = torch.argmax(logits, dim=-1)
    transcription = processor.batch_decode(predicted_ids)[0].strip()
    return transcription


def levenshtein_similarity(transcription1, transcription2):
    """
    Calculate the Levenshtein similarity between two transcriptions.
    Args:
        transcription1 (str): The first transcription.
        transcription2 (str): The second transcription.
    Returns:
        float: A normalized similarity score between 0 and 1, where 1 indicates identical transcriptions.
    """
    distance = Levenshtein.distance(transcription1, transcription2)
    max_len = max(len(transcription1), len(transcription2))
    return 1 - distance / max_len  # Normalize to get similarity score

def evaluate_audio_similarity(original_audio_bytes, user_audio_bytes):
    """
    Compares the similarity between the transcription of an original audio file and a user's audio file.
    Args:
        original_audio_bytes (bytes): Bytes of the original audio file.
        user_audio_bytes (bytes): Bytes of the user's audio file.
    Returns:
        tuple: Transcriptions and Levenshtein similarity score.
    """
    transcription_original = transcribe_audio_hf(original_audio_bytes)
    transcription_user = transcribe_audio_hf(user_audio_bytes)
    similarity_score_levenshtein = levenshtein_similarity(transcription_original, transcription_user)
    return transcription_original, transcription_user, similarity_score_levenshtein

st.title("Audio Transcription and Similarity Checker")

# Choose between upload or record
st.sidebar.header("Input Method")
input_method = st.sidebar.selectbox("Choose Input Method", ["Record"])

original_audio_bytes = None
user_audio_bytes = None


if input_method == "Record":
    st.write("Record or Upload Original Audio")
    test_bytes = audio_recorder(key="tester", pause_threshold=0.2, auto_start=True)

    time.sleep(5)
    original_audio_bytes = audio_recorder(key="original_audio_recorder", pause_threshold=30, icon_size='4x')

    if not original_audio_bytes:
        original_audio = st.file_uploader("Or Upload Original Audio", type=["wav", "mp3"])
        if original_audio:
            original_audio_bytes = original_audio.read()

    if original_audio_bytes:
        with st.spinner("Processing original audio..."):
            st.audio(original_audio_bytes, format="audio/wav")

    st.write("Record or Upload User Audio")
    user_audio_bytes = audio_recorder(key="user_audio_recorder", pause_threshold=30, icon_size='4x')

    if not user_audio_bytes:
        user_audio = st.file_uploader("Or Upload User Audio", type=["wav", "mp3"])
        if user_audio:
            user_audio_bytes = user_audio.read()

    if user_audio_bytes:
        with st.spinner("Processing user audio..."):
            st.audio(user_audio_bytes, format="audio/wav")

    # Add a button to perform the test
    if original_audio_bytes and user_audio_bytes:
        if st.button("Perform Testing"):
            with st.spinner("Performing transcription and similarity testing..."):
                transcription_original, transcription_user, similarity_score = evaluate_audio_similarity(original_audio_bytes, user_audio_bytes)

                # Display results
                st.markdown("---")
                st.subheader("Transcriptions and Similarity Score")
                st.write(f"**Original Transcription:** {transcription_original}")
                st.write(f"**User Transcription:** {transcription_user}")
                st.write(f"**Levenshtein Similarity Score:** {similarity_score:.2f}")

                if similarity_score > 0.8:  # Adjust the threshold as needed
                    st.success("The pronunciation is likely correct based on transcription similarity.")
                else:
                    st.error("The pronunciation may be incorrect based on transcription similarity.")