File size: 10,805 Bytes
c290e43
c645839
4367472
c645839
 
 
 
4367472
2bc8286
c645839
89f7e0d
4367472
d814350
343349d
4367472
 
c645839
 
51250b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d814350
 
 
 
51250b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ae236a
9bd137d
343349d
4367472
8527b54
 
4367472
8527b54
4367472
 
 
 
 
e15a130
 
 
 
 
 
 
 
d814350
 
 
 
 
 
 
e15a130
4367472
 
e15a130
4367472
 
 
 
52c6cb7
 
 
 
 
 
 
 
 
 
 
 
 
 
4367472
52c6cb7
2513859
52c6cb7
d814350
2513859
52c6cb7
4367472
 
52c6cb7
 
 
 
2513859
52c6cb7
 
 
 
 
 
9bd137d
8527b54
4367472
 
 
d814350
 
 
 
 
 
4367472
0c4498a
8527b54
0c4498a
4367472
6ae236a
0c4498a
d814350
 
0c4498a
6ae236a
0c4498a
4367472
51250b6
 
 
d814350
 
51250b6
 
 
 
d814350
 
51250b6
d814350
 
51250b6
 
 
d814350
 
51250b6
 
 
 
d814350
 
 
51250b6
 
 
d814350
 
0c4498a
4367472
 
 
0c4498a
4367472
 
0c4498a
4367472
 
 
d814350
 
 
 
4367472
 
 
 
 
0c4498a
df2abe8
8527b54
d814350
4367472
 
0c4498a
d814350
0c4498a
4367472
 
c290e43
 
4367472
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
import gradio as gr
import os
from PIL import Image
import requests
import io
import gc
import json
from typing import Tuple, Optional, Dict, Any
import logging
from dotenv import load_dotenv

# Configuration du logging
logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)

# Chargement des variables d'environnement
load_dotenv()

# Styles artistiques étendus
ART_STYLES = {
    "Art Moderne": {
        "prompt_prefix": "modern art style poster, professional design",
        "negative_prompt": "traditional, photorealistic, cluttered, busy design"
    },
    "Neo Vintage": {
        "prompt_prefix": "vintage style advertising poster, retro design",
        "negative_prompt": "modern, digital, contemporary style"
    },
    "Pop Art": {
        "prompt_prefix": "pop art style poster, bold design",
        "negative_prompt": "subtle, realistic, traditional art"
    },
    "Minimaliste": {
        "prompt_prefix": "minimalist design poster, clean composition",
        "negative_prompt": "complex, detailed, ornate, busy"
    },
    "Cyberpunk": {
        "prompt_prefix": "cyberpunk style poster, neon lights, futuristic design",
        "negative_prompt": "vintage, natural, rustic, traditional"
    },
    "Aquarelle": {
        "prompt_prefix": "watercolor art style poster, fluid artistic design",
        "negative_prompt": "digital, sharp, photorealistic"
    },
    "Art Déco": {
        "prompt_prefix": "art deco style poster, geometric patterns, luxury design",
        "negative_prompt": "modern, minimalist, casual"
    },
    "Japonais": {
        "prompt_prefix": "japanese art style poster, ukiyo-e inspired design",
        "negative_prompt": "western, modern, photographic"
    },
    "Ultra Réaliste": {
        "prompt_prefix": "hyper-realistic poster, photographic quality, extremely detailed",
        "negative_prompt": "cartoon, illustration, stylized, abstract"
    }
}

# Paramètres de composition
COMPOSITION_PARAMS = {
    "Layouts": {
        "Centré": "centered composition, balanced layout",
        "Asymétrique": "dynamic asymmetrical composition",
        "Grille": "grid-based layout, structured composition",
        "Diagonal": "diagonal dynamic composition",
        "Minimaliste": "minimal composition, lots of whitespace"
    },
    "Ambiances": {
        "Dramatique": "dramatic lighting, high contrast",
        "Doux": "soft lighting, gentle atmosphere",
        "Vibrant": "vibrant colors, energetic mood",
        "Mystérieux": "mysterious atmosphere, moody lighting",
        "Serein": "peaceful atmosphere, calm mood"
    },
    "Palette": {
        "Monochrome": "monochromatic color scheme",
        "Contrasté": "high contrast color palette",
        "Pastel": "soft pastel color palette",
        "Terre": "earthy color palette",
        "Néon": "neon color palette"
    }
}

class ImageGenerator:
    def __init__(self):
        self.API_URL = "https://api-inference.huggingface.co/models/stabilityai/stable-diffusion-xl-base-1.0"
        token = os.getenv('HUGGINGFACE_TOKEN')
        if not token:
            logger.error("HUGGINGFACE_TOKEN non trouvé!")
        self.headers = {"Authorization": f"Bearer {token}"}
        logger.info("ImageGenerator initialisé")

    def _build_prompt(self, params: Dict[str, Any]) -> str:
        style_info = ART_STYLES.get(params["style"], ART_STYLES["Neo Vintage"])
        prompt = f"{style_info['prompt_prefix']}, {params['subject']}"
        
        if params.get("layout"):
            prompt += f", {COMPOSITION_PARAMS['Layouts'][params['layout']]}"
        if params.get("ambiance"):
            prompt += f", {COMPOSITION_PARAMS['Ambiances'][params['ambiance']]}"
        if params.get("palette"):
            prompt += f", {COMPOSITION_PARAMS['Palette'][params['palette']]}"
        
        for param, description in [
            ("detail_level", "highly detailed" if params.get("detail_level", 0) > 7 else "moderately detailed"),
            ("contrast", "high contrast" if params.get("contrast", 0) > 7 else "balanced contrast"),
            ("saturation", "vibrant colors" if params.get("saturation", 0) > 7 else "subtle colors")
        ]:
            if params.get(param):
                prompt += f", {description}"
        
        if params.get("title"):
            prompt += f", with text saying '{params['title']}'"
        
        logger.debug(f"Prompt final: {prompt}")
        return prompt

    def generate(self, params: Dict[str, Any]) -> Tuple[Optional[Image.Image], str]:
        try:
            logger.info(f"Début de génération avec paramètres: {json.dumps(params, indent=2)}")
            if 'Bearer None' in self.headers['Authorization']:
                return None, "⚠️ Erreur: Token Hugging Face non configuré"

            prompt = self._build_prompt(params)
            payload = {
                "inputs": prompt,
                "parameters": {
                    "negative_prompt": ART_STYLES[params["style"]]["negative_prompt"],
                    "num_inference_steps": min(int(35 * (params["quality"]/100)), 40),
                    "guidance_scale": min(7.5 * (params["creativity"]/10), 10.0),
                    "width": 768,
                    "height": 768 if params["orientation"] == "Portrait" else 512
                }
            }

            logger.debug(f"Payload: {json.dumps(payload, indent=2)}")
            response = requests.post(self.API_URL, headers=self.headers, json=payload, timeout=30)

            if response.status_code == 200:
                image = Image.open(io.BytesIO(response.content))
                return image, "✨ Création réussie!"
            else:
                error_msg = f"⚠️ Erreur API {response.status_code}: {response.text}"
                logger.error(error_msg)
                return None, error_msg

        except Exception as e:
            error_msg = f"⚠️ Erreur: {str(e)}"
            logger.exception("Erreur pendant la génération:")
            return None, error_msg
        finally:
            gc.collect()

def create_interface():
    logger.info("Création de l'interface Gradio")
    css = """
    .container { max-width: 1200px; margin: auto; }
    .welcome { text-align: center; margin: 20px 0; padding: 20px; background: #3498db; border-radius: 10px; color: white; }
    .controls-group { background: #ecf0f1; padding: 15px; border-radius: 5px; margin: 10px 0; color: #2c3e50; }
    .advanced-controls { background: #bdc3c7; padding: 12px; border-radius: 5px; margin: 8px 0; }
    .gradio-slider input[type="range"] { accent-color: #3498db; }
    .gradio-button { transition: all 0.3s ease; }
    .gradio-button:hover { transform: translateY(-2px); box-shadow: 0 4px 6px rgba(52, 152, 219, 0.11), 0 1px 3px rgba(0, 0, 0, 0.08); }
    """

    generator = ImageGenerator()

    with gr.Blocks(css=css) as app:
        gr.HTML("""
        <div class="welcome">
            <h1>🎨 Equity Artisan 4.0</h1>
            <p>Assistant de création d'affiches professionnelles avancé</p>
        </div>
        """)

        with gr.Column(elem_classes="container"):
            with gr.Group(elem_classes="controls-group"):
                gr.Markdown("### 📐 Format et Orientation")
                with gr.Row():
                    format_size = gr.Dropdown(choices=["A4", "A3", "A2", "A1", "A0"], value="A4", label="Format")
                    orientation = gr.Radio(choices=["Portrait", "Paysage"], value="Portrait", label="Orientation")

            with gr.Group(elem_classes="controls-group"):
                gr.Markdown("### 🎨 Style et Composition")
                with gr.Row():
                    style = gr.Dropdown(choices=list(ART_STYLES.keys()), value="Neo Vintage", label="Style artistique")
                    layout = gr.Dropdown(choices=list(COMPOSITION_PARAMS["Layouts"].keys()), value="Centré", label="Composition")
                with gr.Row():
                    ambiance = gr.Dropdown(choices=list(COMPOSITION_PARAMS["Ambiances"].keys()), value="Dramatique", label="Ambiance")
                    palette = gr.Dropdown(choices=list(COMPOSITION_PARAMS["Palette"].keys()), value="Contrasté", label="Palette")

            with gr.Group(elem_classes="controls-group"):
                gr.Markdown("### 📝 Contenu")
                subject = gr.Textbox(label="Description", placeholder="Décrivez votre vision...")
                title = gr.Textbox(label="Titre", placeholder="Titre de l'affiche...")

            with gr.Group(elem_classes="advanced-controls"):
                gr.Markdown("### 🎯 Ajustements Fins")
                with gr.Row():
                    detail_level = gr.Slider(minimum=1, maximum=10, value=7, step=1, label="Niveau de Détail")
                    contrast = gr.Slider(minimum=1, maximum=10, value=5, step=1, label="Contraste")
                    saturation = gr.Slider(minimum=1, maximum=10, value=5, step=1, label="Saturation")

            with gr.Group(elem_classes="controls-group"):
                with gr.Row():
                    quality = gr.Slider(minimum=30, maximum=50, value=35, label="Qualité")
                    creativity = gr.Slider(minimum=5, maximum=15, value=7.5, label="Créativité")

            with gr.Row():
                generate_btn = gr.Button("✨ Générer", variant="primary")
                clear_btn = gr.Button("🗑️ Effacer", variant="secondary")

            image_output = gr.Image(label="Aperçu")
            status = gr.Textbox(label="Statut", interactive=False)

        def generate(*args):
            logger.info("Démarrage d'une nouvelle génération")
            params = {
                "format_size": args[0], "orientation": args[1], "style": args[2],
                "layout": args[3], "ambiance": args[4], "palette": args[5],
                "subject": args[6], "title": args[7], "detail_level": args[8],
                "contrast": args[9], "saturation": args[10], "quality": args[11],
                "creativity": args[12]
            }
            result = generator.generate(params)
            logger.info(f"Génération terminée avec statut: {result[1]}")
            return result

        generate_btn.click(
            generate,
            inputs=[format_size, orientation, style, layout, ambiance, palette, subject, title, detail_level, contrast, saturation, quality, creativity],
            outputs=[image_output, status]
        )

        clear_btn.click(lambda: (None, "🗑️ Image effacée"), outputs=[image_output, status])

    logger.info("Interface créée avec succès")
    return app

if __name__ == "__main__":
    app = create_interface()
    logger.info("Démarrage de l'application")
    app.launch()