Update app.py
Browse files
app.py
CHANGED
@@ -17,298 +17,236 @@ logging.basicConfig(level=logging.DEBUG)
|
|
17 |
logger = logging.getLogger(__name__)
|
18 |
load_dotenv()
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
"prompt": "
|
25 |
-
"
|
26 |
-
"params": {
|
27 |
-
"pixel_detail": 0.95,
|
28 |
-
"resolution": (4096, 4096),
|
29 |
-
"guidance_scale": 9.0,
|
30 |
-
"steps": 50
|
31 |
-
}
|
32 |
},
|
33 |
-
"
|
34 |
-
"prompt": "
|
35 |
-
"
|
36 |
-
"params": {
|
37 |
-
"noise_strength": 0.3,
|
38 |
-
"resolution": (2048, 2048),
|
39 |
-
"guidance_scale": 7.5,
|
40 |
-
"steps": 40
|
41 |
-
}
|
42 |
},
|
43 |
-
"
|
44 |
-
"prompt": "
|
45 |
-
"
|
46 |
-
"params": {
|
47 |
-
|
48 |
-
"guidance_scale": 8.0,
|
49 |
-
"steps": 45
|
50 |
-
}
|
51 |
-
}
|
52 |
-
},
|
53 |
-
"Rendus Numériques": {
|
54 |
-
"Cyberpunk": {
|
55 |
-
"prompt": "cyberpunk style, neon lights, volumetric fog, high tech, dynamic lighting, futuristic cityscape",
|
56 |
-
"negative_prompt": "natural, vintage, traditional",
|
57 |
-
"params": {
|
58 |
-
"saturation": 1.9,
|
59 |
-
"neon_strength": 1.5,
|
60 |
-
"volumetric": True
|
61 |
-
}
|
62 |
},
|
63 |
-
"
|
64 |
-
"prompt": "
|
65 |
-
"
|
66 |
-
"params": {
|
67 |
-
"saturation": 1.8,
|
68 |
-
"neon_strength": 1.4,
|
69 |
-
"lut_intensity": 0.9
|
70 |
-
}
|
71 |
-
}
|
72 |
-
},
|
73 |
-
"Photographie": {
|
74 |
-
"HDR": {
|
75 |
-
"prompt": "HDR photography, extreme dynamic range, rich details in shadows and highlights, 8K quality",
|
76 |
-
"negative_prompt": "flat lighting, low contrast",
|
77 |
-
"params": {
|
78 |
-
"dynamic_range": 1.5,
|
79 |
-
"resolution": (7680, 4320),
|
80 |
-
"exposure_levels": 3
|
81 |
-
}
|
82 |
},
|
83 |
-
"
|
84 |
-
"prompt": "
|
85 |
-
"
|
86 |
-
"params": {
|
87 |
-
"bokeh_strength": 0.7,
|
88 |
-
"sharpness": 1.4,
|
89 |
-
"focus_area": 0.5
|
90 |
-
}
|
91 |
-
}
|
92 |
-
},
|
93 |
-
"Art Moderne": {
|
94 |
-
"Flat Design": {
|
95 |
-
"prompt": "flat design style, minimal, clean shapes, solid colors, modern aesthetic",
|
96 |
-
"negative_prompt": "detailed, textured, realistic",
|
97 |
-
"params": {
|
98 |
-
"simplification": 0.8,
|
99 |
-
"resolution": (1920, 1080),
|
100 |
-
"color_reduction": True
|
101 |
-
}
|
102 |
},
|
103 |
-
"
|
104 |
-
"prompt": "
|
105 |
-
"
|
106 |
-
"params": {
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
}
|
112 |
}
|
113 |
-
}
|
114 |
|
115 |
-
class
|
116 |
-
"""Processeur de texte avec effets de base"""
|
117 |
-
|
118 |
def __init__(self):
|
119 |
-
self.
|
120 |
-
|
121 |
-
|
122 |
-
|
|
|
|
|
|
|
|
|
|
|
123 |
try:
|
124 |
-
|
125 |
-
# Texte simple avec ombre
|
126 |
-
shadow_color = "black"
|
127 |
-
text_color = "white"
|
128 |
-
|
129 |
-
# Dessine l'ombre
|
130 |
-
draw.text((position[0]+2, position[1]+2), text,
|
131 |
-
font=self.font, fill=shadow_color)
|
132 |
-
# Dessine le texte
|
133 |
-
draw.text(position, text, font=self.font, fill=text_color)
|
134 |
|
135 |
-
|
|
|
|
|
|
|
|
|
136 |
except Exception as e:
|
137 |
-
logger.error(f"Erreur
|
138 |
return image
|
139 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
class ImageGenerator:
|
141 |
-
"""Générateur d'images avec styles artistiques"""
|
142 |
-
|
143 |
def __init__(self):
|
|
|
144 |
self.api_url = "https://api-inference.huggingface.co/models/stabilityai/stable-diffusion-xl-base-1.0"
|
145 |
-
|
146 |
-
|
147 |
-
logger.error("HUGGINGFACE_TOKEN non trouvé!")
|
148 |
-
self.headers = {"Authorization": f"Bearer {token}"}
|
149 |
-
self.text_processor = TextProcessor()
|
150 |
|
151 |
-
def generate(self, prompt: str, style_category: str, style_name: str,
|
152 |
-
text: Optional[str] = None) -> Tuple[Optional[Image.Image], str]:
|
153 |
try:
|
154 |
-
|
155 |
-
style_info = ART_STYLES[style_category][style_name]
|
156 |
-
|
157 |
-
# Construction du prompt final
|
158 |
final_prompt = f"{prompt}, {style_info['prompt']}"
|
159 |
|
160 |
-
# Paramètres de génération
|
161 |
-
params = {
|
162 |
-
"inputs": final_prompt,
|
163 |
-
"negative_prompt": style_info["negative_prompt"],
|
164 |
-
"guidance_scale": style_info["params"].get("guidance_scale", 7.5),
|
165 |
-
"num_inference_steps": style_info["params"].get("steps", 50),
|
166 |
-
}
|
167 |
-
|
168 |
-
# Appel API
|
169 |
response = requests.post(
|
170 |
self.api_url,
|
171 |
headers=self.headers,
|
172 |
-
json=
|
173 |
timeout=30
|
174 |
)
|
175 |
|
176 |
if response.status_code != 200:
|
177 |
-
logger.error(f"Erreur API: {response.status_code}")
|
178 |
return None, f"Erreur API: {response.status_code}"
|
179 |
-
|
180 |
-
# Traitement de l'image
|
181 |
image = Image.open(io.BytesIO(response.content))
|
|
|
182 |
|
183 |
-
|
184 |
-
image = self._apply_style_effects(image, style_info["params"])
|
185 |
-
|
186 |
-
# Ajout de texte si nécessaire
|
187 |
-
if text:
|
188 |
-
image = self.text_processor.add_text(
|
189 |
-
image,
|
190 |
-
text,
|
191 |
-
(image.width//2, image.height//2)
|
192 |
-
)
|
193 |
-
|
194 |
-
return image, "✨ Génération réussie!"
|
195 |
-
|
196 |
except Exception as e:
|
197 |
-
logger.error(f"Erreur
|
198 |
return None, f"Erreur: {str(e)}"
|
199 |
finally:
|
200 |
-
gc.collect()
|
201 |
-
|
202 |
-
def _apply_style_effects(self, image: Image.Image, style_params: Dict) -> Image.Image:
|
203 |
-
"""Applique les effets spécifiques au style"""
|
204 |
-
try:
|
205 |
-
# Conversion pour traitement
|
206 |
-
img_array = np.array(image)
|
207 |
-
|
208 |
-
# Application des effets selon les paramètres
|
209 |
-
if style_params.get("saturation"):
|
210 |
-
img_array = self._adjust_saturation(img_array, style_params["saturation"])
|
211 |
-
|
212 |
-
if style_params.get("neon_strength"):
|
213 |
-
img_array = self._apply_neon_effect(img_array, style_params["neon_strength"])
|
214 |
-
|
215 |
-
if style_params.get("volumetric"):
|
216 |
-
img_array = self._add_volumetric_effect(img_array)
|
217 |
-
|
218 |
-
if style_params.get("bokeh_strength"):
|
219 |
-
img_array = self._apply_bokeh(img_array, style_params["bokeh_strength"])
|
220 |
-
|
221 |
-
return Image.fromarray(img_array)
|
222 |
-
|
223 |
-
except Exception as e:
|
224 |
-
logger.error(f"Erreur lors de l'application des effets: {str(e)}")
|
225 |
-
return image
|
226 |
-
|
227 |
-
def _adjust_saturation(self, image: np.ndarray, factor: float) -> np.ndarray:
|
228 |
-
hsv = cv2.cvtColor(image, cv2.COLOR_RGB2HSV)
|
229 |
-
hsv[..., 1] = np.clip(hsv[..., 1] * factor, 0, 255)
|
230 |
-
return cv2.cvtColor(hsv, cv2.COLOR_HSV2RGB)
|
231 |
-
|
232 |
-
def _apply_neon_effect(self, image: np.ndarray, strength: float) -> np.ndarray:
|
233 |
-
blurred = cv2.GaussianBlur(image, (0, 0), 15)
|
234 |
-
return cv2.addWeighted(image, 1, blurred, strength, 0)
|
235 |
-
|
236 |
-
def _add_volumetric_effect(self, image: np.ndarray) -> np.ndarray:
|
237 |
-
gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
|
238 |
-
fog = cv2.GaussianBlur(gray, (0, 0), 20)
|
239 |
-
return cv2.addWeighted(image, 1, cv2.cvtColor(fog, cv2.COLOR_GRAY2RGB), 0.2, 0)
|
240 |
-
|
241 |
-
def _apply_bokeh(self, image: np.ndarray, strength: float) -> np.ndarray:
|
242 |
-
blurred = cv2.GaussianBlur(image, (0, 0), int(30 * strength))
|
243 |
-
mask = np.random.random(image.shape[:2]) > 0.5
|
244 |
-
result = image.copy()
|
245 |
-
result[mask] = blurred[mask]
|
246 |
-
return result
|
247 |
-
|
248 |
-
def create_interface():
|
249 |
-
"""Création de l'interface utilisateur"""
|
250 |
generator = ImageGenerator()
|
251 |
|
252 |
with gr.Blocks() as demo:
|
253 |
-
gr.HTML("
|
|
|
|
|
|
|
|
|
|
|
254 |
|
255 |
with gr.Row():
|
256 |
-
with gr.Column():
|
257 |
-
|
258 |
-
|
|
|
|
|
259 |
|
260 |
style_category = gr.Dropdown(
|
261 |
-
choices=list(
|
262 |
-
label="Catégorie de Style"
|
|
|
263 |
)
|
264 |
|
265 |
style_name = gr.Dropdown(
|
266 |
label="Style Spécifique"
|
267 |
)
|
268 |
|
269 |
-
# Mise à jour dynamique des styles
|
270 |
def update_styles(category):
|
271 |
return gr.Dropdown.update(
|
272 |
-
choices=list(
|
273 |
)
|
274 |
|
275 |
style_category.change(
|
276 |
update_styles,
|
277 |
-
inputs=
|
278 |
-
outputs=
|
279 |
)
|
280 |
|
281 |
-
|
282 |
-
label="
|
283 |
-
|
284 |
)
|
285 |
|
286 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
287 |
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
292 |
|
293 |
-
def generate_image(prompt, category, style,
|
294 |
-
if not prompt
|
295 |
return None, "⚠️ Veuillez remplir tous les champs requis"
|
296 |
|
297 |
-
|
|
|
|
|
|
|
|
|
|
|
298 |
prompt=prompt,
|
299 |
style_category=category,
|
300 |
-
style_name=style
|
301 |
-
text=text if text else None
|
302 |
)
|
303 |
|
304 |
-
return image,
|
305 |
|
306 |
generate_btn.click(
|
307 |
generate_image,
|
308 |
-
inputs=[
|
309 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
310 |
)
|
311 |
-
|
312 |
return demo
|
313 |
|
314 |
if __name__ == "__main__":
|
|
|
17 |
logger = logging.getLogger(__name__)
|
18 |
load_dotenv()
|
19 |
|
20 |
+
def load_art_styles():
|
21 |
+
return {
|
22 |
+
"Styles Traditionnels": {
|
23 |
+
"Renaissance": {"prompt": "renaissance masterpiece, anatomical precision, detailed texture, chiaroscuro lighting", "params": {"resolution": (4096, 4096), "detail_level": 0.95}},
|
24 |
+
"Impressionnisme": {"prompt": "impressionist style painting, visible brushstrokes, natural light", "params": {"resolution": (3072, 3072), "noise_level": 0.3}},
|
25 |
+
"Surréalisme": {"prompt": "surrealist dreamlike scene, symbolic elements, subconscious imagery", "params": {"randomization": 0.4}},
|
26 |
+
"Cubisme": {"prompt": "cubist style, geometric forms, multiple perspectives", "params": {"geometric_strength": 0.8}}
|
|
|
|
|
|
|
|
|
|
|
27 |
},
|
28 |
+
"Rendus Numériques": {
|
29 |
+
"Synthwave": {"prompt": "synthwave aesthetic, neon grid, retro-futuristic, vibrant", "params": {"saturation": 1.8, "neon": True}},
|
30 |
+
"Cyberpunk": {"prompt": "cyberpunk style, neon-lit, high-tech, volumetric lighting", "params": {"volumetric": True, "neon": True}},
|
31 |
+
"Sci-Fi": {"prompt": "sci-fi environment, futuristic technology, advanced architecture", "params": {"tech_level": 0.9}}
|
|
|
|
|
|
|
|
|
|
|
32 |
},
|
33 |
+
"Photographie": {
|
34 |
+
"HDR": {"prompt": "HDR photography, extreme dynamic range, detailed shadows and highlights", "params": {"hdr_strength": 1.5}},
|
35 |
+
"Macro": {"prompt": "macro photography, extreme close-up, fine details", "params": {"detail_scale": 0.5}},
|
36 |
+
"Portrait": {"prompt": "professional portrait photography, studio lighting, bokeh", "params": {"bokeh": 0.7}},
|
37 |
+
"Vintage": {"prompt": "vintage photography, aged effect, retro colors", "params": {"grain": 0.4}}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
},
|
39 |
+
"Illustration": {
|
40 |
+
"Aquarelle": {"prompt": "watercolor illustration, fluid transparency, soft edges", "params": {"transparency": 0.6}},
|
41 |
+
"Encre": {"prompt": "ink drawing, bold strokes, high contrast", "params": {"contrast": 1.4}},
|
42 |
+
"Huile": {"prompt": "oil painting, thick impasto, rich colors", "params": {"texture": 0.8}}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
},
|
44 |
+
"Photoréalisme": {
|
45 |
+
"Nature_Morte": {"prompt": "photorealistic still life, extreme detail, perfect lighting", "params": {"detail_level": 0.98}},
|
46 |
+
"Paysage": {"prompt": "photorealistic landscape, natural lighting, atmospheric", "params": {"atmosphere": 0.7}}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
},
|
48 |
+
"Fantasy": {
|
49 |
+
"Fantasy": {"prompt": "fantasy art, magical atmosphere, mythical elements", "params": {"magic_effect": 0.8}},
|
50 |
+
"Dark_Fantasy": {"prompt": "dark fantasy, gothic elements, mysterious atmosphere", "params": {"darkness": 0.7}},
|
51 |
+
"Steampunk": {"prompt": "steampunk style, brass and copper, mechanical elements", "params": {"mechanical": 0.9}}
|
52 |
+
},
|
53 |
+
"Abstrait": {
|
54 |
+
"Holographique": {"prompt": "holographic effect, iridescent colors, light refraction", "params": {"iridescence": 0.8}},
|
55 |
+
"Fractal": {"prompt": "fractal art, recursive patterns, mathematical beauty", "params": {"complexity": 0.9}}
|
56 |
+
},
|
57 |
+
"Graphisme": {
|
58 |
+
"Flat": {"prompt": "flat design, minimal shapes, solid colors", "params": {"simplification": 0.8}},
|
59 |
+
"Material": {"prompt": "material design, subtle shadows, layered elements", "params": {"layers": 0.6}},
|
60 |
+
"Isométrique": {"prompt": "isometric design, geometric precision, clean lines", "params": {"precision": 0.9}}
|
61 |
+
},
|
62 |
+
"Gaming": {
|
63 |
+
"Pixel_Art": {"prompt": "pixel art style, retro gaming aesthetic, limited palette", "params": {"pixelation": 0.7}},
|
64 |
+
"Cel_Shading": {"prompt": "cel shaded style, anime-like, bold outlines", "params": {"outline": 0.8}}
|
65 |
}
|
66 |
}
|
|
|
67 |
|
68 |
+
class ImageProcessor:
|
|
|
|
|
69 |
def __init__(self):
|
70 |
+
self.effects = {
|
71 |
+
"neon": self._apply_neon,
|
72 |
+
"bokeh": self._apply_bokeh,
|
73 |
+
"grain": self._apply_grain,
|
74 |
+
"hdr": self._apply_hdr,
|
75 |
+
"pixelation": self._apply_pixelation
|
76 |
+
}
|
77 |
+
|
78 |
+
def process_image(self, image: Image.Image, style_params: Dict) -> Image.Image:
|
79 |
try:
|
80 |
+
img_array = np.array(image)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
+
for effect, value in style_params.items():
|
83 |
+
if effect in self.effects and value:
|
84 |
+
img_array = self.effects[effect](img_array, value)
|
85 |
+
|
86 |
+
return Image.fromarray(img_array)
|
87 |
except Exception as e:
|
88 |
+
logger.error(f"Erreur traitement: {str(e)}")
|
89 |
return image
|
90 |
|
91 |
+
def _apply_neon(self, image: np.ndarray, strength: float) -> np.ndarray:
|
92 |
+
hsv = cv2.cvtColor(image, cv2.COLOR_RGB2HSV)
|
93 |
+
hsv[..., 1] = np.clip(hsv[..., 1] * strength, 0, 255)
|
94 |
+
glow = cv2.GaussianBlur(cv2.cvtColor(hsv, cv2.COLOR_HSV2RGB), (0, 0), 15)
|
95 |
+
return cv2.addWeighted(image, 1, glow, 0.5, 0)
|
96 |
+
|
97 |
+
def _apply_bokeh(self, image: np.ndarray, strength: float) -> np.ndarray:
|
98 |
+
blur = cv2.GaussianBlur(image, (0, 0), int(30 * strength))
|
99 |
+
mask = np.random.random(image.shape[:2]) > 0.5
|
100 |
+
result = image.copy()
|
101 |
+
result[mask] = blur[mask]
|
102 |
+
return result
|
103 |
+
|
104 |
+
def _apply_grain(self, image: np.ndarray, strength: float) -> np.ndarray:
|
105 |
+
noise = np.random.normal(0, strength * 50, image.shape).astype(np.uint8)
|
106 |
+
return np.clip(image + noise, 0, 255)
|
107 |
+
|
108 |
+
def _apply_hdr(self, image: np.ndarray, strength: float) -> np.ndarray:
|
109 |
+
return exposure.adjust_gamma(image, 1.0 / strength)
|
110 |
+
|
111 |
+
def _apply_pixelation(self, image: np.ndarray, strength: float) -> np.ndarray:
|
112 |
+
h, w = image.shape[:2]
|
113 |
+
size = int(max(h, w) * (1 - strength))
|
114 |
+
small = cv2.resize(image, (size, size), interpolation=cv2.INTER_LINEAR)
|
115 |
+
return cv2.resize(small, (w, h), interpolation=cv2.INTER_NEAREST)
|
116 |
+
|
117 |
class ImageGenerator:
|
|
|
|
|
118 |
def __init__(self):
|
119 |
+
self.processor = ImageProcessor()
|
120 |
self.api_url = "https://api-inference.huggingface.co/models/stabilityai/stable-diffusion-xl-base-1.0"
|
121 |
+
self.headers = {"Authorization": f"Bearer {os.getenv('HUGGINGFACE_TOKEN')}"}
|
122 |
+
self.styles = load_art_styles()
|
|
|
|
|
|
|
123 |
|
124 |
+
async def generate(self, prompt: str, style_category: str, style_name: str) -> Tuple[Optional[Image.Image], str]:
|
|
|
125 |
try:
|
126 |
+
style_info = self.styles[style_category][style_name]
|
|
|
|
|
|
|
127 |
final_prompt = f"{prompt}, {style_info['prompt']}"
|
128 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
response = requests.post(
|
130 |
self.api_url,
|
131 |
headers=self.headers,
|
132 |
+
json={"inputs": final_prompt},
|
133 |
timeout=30
|
134 |
)
|
135 |
|
136 |
if response.status_code != 200:
|
|
|
137 |
return None, f"Erreur API: {response.status_code}"
|
138 |
+
|
|
|
139 |
image = Image.open(io.BytesIO(response.content))
|
140 |
+
processed = self.processor.process_image(image, style_info['params'])
|
141 |
|
142 |
+
return processed, "✨ Génération réussie!"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
143 |
except Exception as e:
|
144 |
+
logger.error(f"Erreur: {str(e)}")
|
145 |
return None, f"Erreur: {str(e)}"
|
146 |
finally:
|
147 |
+
gc.collect()def create_interface():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
148 |
generator = ImageGenerator()
|
149 |
|
150 |
with gr.Blocks() as demo:
|
151 |
+
gr.HTML("""
|
152 |
+
<div style='text-align: center; margin-bottom: 1rem'>
|
153 |
+
<h1>🎨 Equity Art Engine</h1>
|
154 |
+
<p>Générateur d'Images Avancé avec Styles Artistiques</p>
|
155 |
+
</div>
|
156 |
+
""")
|
157 |
|
158 |
with gr.Row():
|
159 |
+
with gr.Column(scale=1):
|
160 |
+
prompt = gr.Textbox(
|
161 |
+
label="Description",
|
162 |
+
placeholder="Décrivez votre image..."
|
163 |
+
)
|
164 |
|
165 |
style_category = gr.Dropdown(
|
166 |
+
choices=list(generator.styles.keys()),
|
167 |
+
label="Catégorie de Style",
|
168 |
+
value="Styles Traditionnels"
|
169 |
)
|
170 |
|
171 |
style_name = gr.Dropdown(
|
172 |
label="Style Spécifique"
|
173 |
)
|
174 |
|
|
|
175 |
def update_styles(category):
|
176 |
return gr.Dropdown.update(
|
177 |
+
choices=list(generator.styles[category].keys()) if category else []
|
178 |
)
|
179 |
|
180 |
style_category.change(
|
181 |
update_styles,
|
182 |
+
inputs=style_category,
|
183 |
+
outputs=style_name
|
184 |
)
|
185 |
|
186 |
+
advanced_params = gr.Checkbox(
|
187 |
+
label="Paramètres avancés",
|
188 |
+
value=False
|
189 |
)
|
190 |
|
191 |
+
with gr.Column(visible=False) as advanced_options:
|
192 |
+
quality = gr.Slider(
|
193 |
+
minimum=1,
|
194 |
+
maximum=10,
|
195 |
+
value=7,
|
196 |
+
step=1,
|
197 |
+
label="Qualité"
|
198 |
+
)
|
199 |
+
|
200 |
+
seed = gr.Number(
|
201 |
+
label="Seed (-1 pour aléatoire)",
|
202 |
+
value=-1
|
203 |
+
)
|
204 |
|
205 |
+
def toggle_advanced(show):
|
206 |
+
return gr.update(visible=show)
|
207 |
+
|
208 |
+
advanced_params.change(
|
209 |
+
toggle_advanced,
|
210 |
+
inputs=advanced_params,
|
211 |
+
outputs=advanced_options
|
212 |
+
)
|
213 |
+
|
214 |
+
generate_btn = gr.Button("✨ Générer", variant="primary")
|
215 |
+
|
216 |
+
with gr.Column(scale=2):
|
217 |
+
output_image = gr.Image(label="Image Générée")
|
218 |
+
status = gr.Textbox(label="Status")
|
219 |
|
220 |
+
def generate_image(prompt, category, style, use_advanced, quality, seed):
|
221 |
+
if not all([prompt, category, style]):
|
222 |
return None, "⚠️ Veuillez remplir tous les champs requis"
|
223 |
|
224 |
+
params = {
|
225 |
+
"quality": quality if use_advanced else 7,
|
226 |
+
"seed": seed if use_advanced and seed != -1 else None
|
227 |
+
}
|
228 |
+
|
229 |
+
image, status_msg = generator.generate(
|
230 |
prompt=prompt,
|
231 |
style_category=category,
|
232 |
+
style_name=style
|
|
|
233 |
)
|
234 |
|
235 |
+
return image, status_msg
|
236 |
|
237 |
generate_btn.click(
|
238 |
generate_image,
|
239 |
+
inputs=[
|
240 |
+
prompt,
|
241 |
+
style_category,
|
242 |
+
style_name,
|
243 |
+
advanced_params,
|
244 |
+
quality,
|
245 |
+
seed
|
246 |
+
],
|
247 |
+
outputs=[output_image, status]
|
248 |
)
|
249 |
+
|
250 |
return demo
|
251 |
|
252 |
if __name__ == "__main__":
|