Spaces:
Running
Running
File size: 11,063 Bytes
d40b8b6 5422259 c924006 d40b8b6 c924006 d40b8b6 c924006 d40b8b6 c924006 d40b8b6 c924006 d40b8b6 c924006 d40b8b6 c924006 d40b8b6 c924006 d40b8b6 c924006 d40b8b6 c924006 d40b8b6 c924006 d40b8b6 c924006 d40b8b6 c924006 d40b8b6 c924006 d40b8b6 c924006 d40b8b6 c924006 d40b8b6 c924006 d40b8b6 c924006 d40b8b6 c924006 d40b8b6 c924006 d40b8b6 c924006 d40b8b6 c924006 d40b8b6 c924006 d40b8b6 c924006 d40b8b6 c924006 d40b8b6 c924006 d40b8b6 c924006 d40b8b6 c924006 d40b8b6 c924006 d40b8b6 c924006 d40b8b6 c924006 d40b8b6 c924006 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 |
import pandas as pd
import streamlit as st
from datetime import datetime, timedelta
import matplotlib.pyplot as plt
import io
import base64
import matplotlib.gridspec as gridspec
import math
from matplotlib.backends.backend_pdf import PdfPages
from matplotlib.patches import Rectangle # Replaced FancyBboxPatch
# --- Constants ---
SPLIT_TIME = "17:30"
BUSINESS_START = "09:30"
BUSINESS_END = "01:30"
BORDER_COLOR = '#A9A9A9'
DATE_COLOR = '#A9A9A9'
SEQ_COLOR = '#A9A9A9' # Color for the new serial number
def process_schedule(file):
"""处理上传的 Excel 文件,生成排序和分组后的打印内容"""
try:
# 读取 Excel,跳过前 8 行
df = pd.read_excel(file, skiprows=8)
# 提取所需列 (G9, H9, J9)
df = df.iloc[:, [6, 7, 9]] # G, H, J 列
df.columns = ['Hall', 'StartTime', 'EndTime']
# 清理数据
df = df.dropna(subset=['Hall', 'StartTime', 'EndTime'])
# 转换影厅格式为 "#号" 格式
df['Hall'] = df['Hall'].str.extract(r'(\d+)号').astype(str) + ' '
# 保存原始时间字符串用于诊断
df['original_end'] = df['EndTime']
# 转换时间为 datetime 对象
base_date = datetime.today().date()
# Using errors='coerce' will turn unparseable times into NaT (Not a Time)
df['StartTime'] = pd.to_datetime(df['StartTime'], errors='coerce')
df['EndTime'] = pd.to_datetime(df['EndTime'], errors='coerce')
df = df.dropna(subset=['StartTime', 'EndTime']) # Drop rows where time conversion failed
# 设置基准时间
business_start_time = datetime.strptime(BUSINESS_START, "%H:%M").time()
business_end_time = datetime.strptime(BUSINESS_END, "%H:%M").time()
# 处理跨天情况:结束时间小于开始时间,则结束时间加一天
# This logic handles cases like 9:30 AM to 1:30 AM (next day)
df['EndTime_adjusted'] = df.apply(
lambda row: row['EndTime'] + timedelta(days=1) if row['EndTime'].time() < row['StartTime'].time() else row['EndTime'],
axis=1
)
# 按散场时间排序 (using the adjusted time)
df = df.sort_values('EndTime_adjusted')
# 分割数据
split_dt = datetime.strptime(SPLIT_TIME, "%H:%M").time()
part1 = df[df['EndTime_adjusted'].dt.time <= split_dt].copy()
part2 = df[df['EndTime_adjusted'].dt.time > split_dt].copy()
# 格式化时间显示 (use original EndTime for display)
for part in [part1, part2]:
part['EndTime_formatted'] = part['EndTime'].dt.strftime('%-I:%M')
# 读取日期单元格 C6
date_df = pd.read_excel(file, skiprows=5, nrows=1, usecols=[2], header=None)
date_cell = date_df.iloc[0, 0]
try:
if isinstance(date_cell, str):
# Assuming format like '2023-10-27'
date_str = datetime.strptime(date_cell, '%Y-%m-%d').strftime('%Y-%m-%d')
else:
# Assuming it's a datetime object
date_str = pd.to_datetime(date_cell).strftime('%Y-%m-%d')
except:
date_str = datetime.today().strftime('%Y-%m-%d')
return part1[['Hall', 'EndTime_formatted']], part2[['Hall', 'EndTime_formatted']], date_str
except Exception as e:
st.error(f"处理文件时出错: {str(e)}")
return None, None, None
def create_print_layout(data, title, date_str):
"""
创建符合新要求的打印布局 (PNG 和 PDF)。
1. 动态计算边距。
2. 使用灰色虚线圆点作为单元格边框。
3. 单元格内容区域为单元格的90%。
4. 在左上角添加灰色序号。
"""
if data.empty:
return None
# --- Constants ---
A5_WIDTH_IN = 5.83
A5_HEIGHT_IN = 8.27
DPI = 300
NUM_COLS = 3
# --- Setup Figure ---
fig = plt.figure(figsize=(A5_WIDTH_IN, A5_HEIGHT_IN), dpi=DPI)
# --- Font Setup ---
plt.rcParams['font.family'] = 'sans-serif'
plt.rcParams['font.sans-serif'] = ['Arial Unicode MS', 'Heiti TC', 'sans-serif']
# --- Data Preparation ---
total_items = len(data)
# Augment data with an original index for numbering
data_values_with_index = [(i, row) for i, row in enumerate(data.values.tolist())]
# Pad data to be a multiple of NUM_COLS
padded_total = math.ceil(total_items / NUM_COLS) * NUM_COLS
while len(data_values_with_index) < padded_total:
data_values_with_index.append((None, ['', '']))
num_rows = padded_total // NUM_COLS
# --- Layout Calculation (Request 1) ---
if num_rows > 0:
# "A5 paper height / num_rows / 4 is the padding for all sides"
padding_in = (A5_HEIGHT_IN / num_rows / 4)
# Cap padding to prevent it from being excessively large
padding_in = min(padding_in, 0.5)
else:
padding_in = 0.25 # Default padding if no rows
# Convert padding to relative figure coordinates for subplots_adjust
left_margin = padding_in / A5_WIDTH_IN
right_margin = 1 - left_margin
bottom_margin = padding_in / A5_HEIGHT_IN
top_margin = 1 - bottom_margin
# Adjust overall figure margins
fig.subplots_adjust(left=left_margin, right=right_margin, top=top_margin, bottom=bottom_margin, hspace=0.4, wspace=0.4)
# --- Grid & Font Size ---
gs = gridspec.GridSpec(num_rows + 1, NUM_COLS, height_ratios=[0.2] + [1] * num_rows, figure=fig)
if num_rows > 0:
content_area_height_in = A5_HEIGHT_IN * (top_margin - bottom_margin)
cell_height_in = content_area_height_in / num_rows * (1 - fig.subplotpars.hspace)
base_fontsize = min(40, max(10, cell_height_in * 72 * 0.4)) # 72 pt/inch, 40% of cell height
else:
base_fontsize = 20
# --- Z-Sort (Column-major) Data for Layout ---
rows_per_col_layout = num_rows
sorted_data = [(None, ['',''])] * padded_total
for i, item_tuple in enumerate(data_values_with_index):
if item_tuple[0] is not None:
original_data_index = i # Index from the time-sorted list
row_in_col = original_data_index % rows_per_col_layout
col_idx = original_data_index // rows_per_col_layout
new_grid_index = row_in_col * NUM_COLS + col_idx
if new_grid_index < len(sorted_data):
sorted_data[new_grid_index] = item_tuple
# --- Drawing Logic ---
for grid_idx, item_tuple in enumerate(sorted_data):
original_index, (hall, end_time) = item_tuple
if original_index is not None:
row_grid = grid_idx // NUM_COLS + 1 # +1 because date is in row 0
col_grid = grid_idx % NUM_COLS
ax = fig.add_subplot(gs[row_grid, col_grid])
ax.set_axis_off()
# --- Cell Border (Request 2) & Content Area (Request 3) ---
# Draw a dotted rectangle. Content will be placed inside this.
# Making the rect slightly smaller creates a visual 90% area.
cell_border = Rectangle((0.05, 0.05), 0.9, 0.9,
edgecolor=BORDER_COLOR,
facecolor='none',
linestyle=(0, (1, 1.5)), # Dotted line with round caps
linewidth=1,
transform=ax.transAxes,
clip_on=False)
ax.add_patch(cell_border)
# --- Cell Content ---
display_text = f"{hall}{end_time}"
ax.text(0.5, 0.5, display_text,
fontsize=base_fontsize,
fontweight='bold',
ha='center', va='center',
transform=ax.transAxes)
# --- Cell Numbering (Request 4) ---
# Serial number is original_index + 1
ax.text(0.12, 0.82, str(original_index + 1),
fontsize=base_fontsize * 0.5,
color=SEQ_COLOR,
fontweight='normal',
ha='center', va='center',
transform=ax.transAxes)
# --- Date Header ---
ax_date = fig.add_subplot(gs[0, :])
ax_date.set_axis_off()
ax_date.text(0, 0.5, f"{date_str} {title}",
fontsize=base_fontsize * 0.6,
color=DATE_COLOR,
fontweight='bold',
ha='left', va='center',
transform=ax_date.transAxes)
# --- Save to Buffers ---
# Save PNG
png_buffer = io.BytesIO()
fig.savefig(png_buffer, format='png', bbox_inches='tight', pad_inches=0.02)
png_buffer.seek(0)
png_base64 = base64.b64encode(png_buffer.getvalue()).decode()
# Save PDF
pdf_buffer = io.BytesIO()
fig.savefig(pdf_buffer, format='pdf', bbox_inches='tight', pad_inches=0.02)
pdf_buffer.seek(0)
pdf_base64 = base64.b64encode(pdf_buffer.getvalue()).decode()
plt.close(fig)
return {
'png': f'data:image/png;base64,{png_base64}',
'pdf': f'data:application/pdf;base64,{pdf_base64}'
}
def display_pdf(base64_pdf):
"""在Streamlit中嵌入显示PDF"""
pdf_display = f'<iframe src="{base64_pdf}" width="100%" height="800" type="application/pdf"></iframe>'
return pdf_display
# --- Streamlit UI ---
st.set_page_config(page_title="散厅时间快捷打印", layout="wide")
st.title("散厅时间快捷打印")
uploaded_file = st.file_uploader("上传【放映场次核对表.xls】文件", type=["xls", "xlsx"])
if uploaded_file:
# Use new column name 'EndTime_formatted' for display
part1, part2, date_str = process_schedule(uploaded_file)
if part1 is not None and part2 is not None:
part1_data_for_layout = part1[['Hall', 'EndTime_formatted']]
part2_data_for_layout = part2[['Hall', 'EndTime_formatted']]
part1_output = create_print_layout(part1_data_for_layout, "A", date_str)
part2_output = create_print_layout(part2_data_for_layout, "C", date_str)
col1, col2 = st.columns(2)
with col1:
st.subheader("白班散场预览(散场时间 ≤ 17:30)")
if part1_output:
tab1_1, tab1_2 = st.tabs(["PDF 预览", "PNG 预览"])
with tab1_1:
st.markdown(display_pdf(part1_output['pdf']), unsafe_allow_html=True)
with tab1_2:
st.image(part1_output['png'])
else:
st.info("白班部分没有数据")
with col2:
st.subheader("夜班散场预览(散场时间 > 17:30)")
if part2_output:
tab2_1, tab2_2 = st.tabs(["PDF 预览", "PNG 预览"])
with tab2_1:
st.markdown(display_pdf(part2_output['pdf']), unsafe_allow_html=True)
with tab2_2:
st.image(part2_output['png'])
else:
st.info("夜班部分没有数据") |