end-print / app.py
Ethscriptions's picture
Update app.py
1ca624e verified
raw
history blame
11.1 kB
import pandas as pd
import streamlit as st
from datetime import datetime, timedelta
import matplotlib.pyplot as plt
import io
import base64
import matplotlib.gridspec as gridspec
import math
from matplotlib.backends.backend_pdf import PdfPages
# Constants
SPLIT_TIME = "17:30"
BUSINESS_START = "09:30"
BUSINESS_END = "01:30"
BORDER_COLOR = 'grey' # Changed to grey for the new border
DATE_COLOR = '#A9A9A9'
A5_WIDTH_IN = 5.83
A5_HEIGHT_IN = 8.27
NUM_COLS = 3
def process_schedule(file):
"""处理上传的 Excel 文件,生成排序和分组后的打印内容"""
try:
# 读取 Excel,跳过前 8 行
df = pd.read_excel(file, skiprows=8)
# 提取所需列 (G9, H9, J9)
df = df.iloc[:, [6, 7, 9]] # G, H, J 列
df.columns = ['Hall', 'StartTime', 'EndTime']
# 清理数据
df = df.dropna(subset=['Hall', 'StartTime', 'EndTime'])
# 转换影厅格式为 "#号" 格式
df['Hall'] = df['Hall'].str.extract(r'(\d+)号').astype(str) + ' '
# 保存原始时间字符串用于诊断
df['original_end'] = df['EndTime']
# 转换时间为 datetime 对象
base_date = datetime.today().date()
df['StartTime'] = pd.to_datetime(df['StartTime'])
df['EndTime'] = pd.to_datetime(df['EndTime'])
# 设置基准时间
business_start = datetime.strptime(f"{base_date} {BUSINESS_START}", "%Y-%m-%d %H:%M")
business_end = datetime.strptime(f"{base_date} {BUSINESS_END}", "%Y-%m-%d %H:%M")
# 处理跨天情况
if business_end < business_start:
business_end += timedelta(days=1)
# 标准化所有时间到同一天
for idx, row in df.iterrows():
end_time = row['EndTime']
if end_time.hour < 9:
df.at[idx, 'EndTime'] = end_time + timedelta(days=1)
if row['StartTime'].hour >= 21 and end_time.hour < 9:
df.at[idx, 'EndTime'] = end_time + timedelta(days=1)
# 筛选营业时间内的场次
df['time_for_comparison'] = df['EndTime'].apply(
lambda x: datetime.combine(base_date, x.time())
)
df.loc[df['time_for_comparison'].dt.hour < 9, 'time_for_comparison'] += timedelta(days=1)
valid_times = (
((df['time_for_comparison'] >= datetime.combine(base_date, business_start.time())) &
(df['time_for_comparison'] <= datetime.combine(base_date + timedelta(days=1), business_end.time())))
)
df = df[valid_times]
# 按散场时间排序
df = df.sort_values('EndTime')
# 分割数据
split_time = datetime.strptime(f"{base_date} {SPLIT_TIME}", "%Y-%m-%d %H:%M")
split_time_for_comparison = df['time_for_comparison'].apply(
lambda x: datetime.combine(base_date, split_time.time())
)
part1 = df[df['time_for_comparison'] <= split_time_for_comparison].copy()
part2 = df[df['time_for_comparison'] > split_time_for_comparison].copy()
# 格式化时间显示
for part in [part1, part2]:
part['EndTime'] = part['EndTime'].dt.strftime('%-H:%M')
# 精确读取C6单元格
date_df = pd.read_excel(
file,
skiprows=5, # 跳过前5行(0-4)
nrows=1, # 只读1行
usecols=[2], # 第三列(C列)
header=None # 无表头
)
date_cell = date_df.iloc[0, 0]
try:
# 处理不同日期格式
if isinstance(date_cell, str):
date_str = datetime.strptime(date_cell, '%Y-%m-%d').strftime('%Y-%m-%d')
else:
date_str = pd.to_datetime(date_cell).strftime('%Y-%m-%d')
except:
date_str = datetime.today().strftime('%Y-%m-%d')
return part1[['Hall', 'EndTime']], part2[['Hall', 'EndTime']], date_str
except Exception as e:
st.error(f"处理文件时出错: {str(e)}")
return None, None, None
def create_print_layout(data, title, date_str):
"""创建精确的 A5 表格打印布局 (PNG 和 PDF)"""
if data.empty:
return None
# --- 内部绘图函数 ---
def generate_figure():
# --- 1. 计算布局和字体大小 ---
total_items = len(data)
num_rows = math.ceil(total_items / NUM_COLS) if total_items > 0 else 1
# 定义日期标题行的高度(英寸),数据行将填充剩余空间
date_header_height_in = 0.3
data_area_height_in = A5_HEIGHT_IN - date_header_height_in
# 计算每个数据单元格的尺寸(英寸)
cell_width_in = A5_WIDTH_IN / NUM_COLS
cell_height_in = data_area_height_in / num_rows
# 将单元格宽度转换为点(1 英寸 = 72 点)
cell_width_pt = cell_width_in * 72
cell_height_pt = cell_height_in * 72
# --- 动态字体大小计算 ---
# 目标:文本总宽度为单元格宽度的 90%
target_text_width_pt = cell_width_pt * 0.9
# 启发式估算:假设最长文本为 "10 23:59" (8个字符),平均字符宽度约为字体大小的0.6倍
# FONT_SIZE = target_width / (num_chars * avg_char_width_factor)
fontsize_from_width = target_text_width_pt / (8 * 0.6)
# 字体高度不能超过单元格高度(留出20%的垂直边距)
fontsize_from_height = cell_height_pt * 0.8
# 选择两者中较小的一个,以确保文本能完全容纳
base_fontsize = min(fontsize_from_width, fontsize_from_height)
# --- 2. 创建图形和网格 ---
fig = plt.figure(figsize=(A5_WIDTH_IN, A5_HEIGHT_IN), dpi=300)
# 设置无边距,让网格填满整个图纸
fig.subplots_adjust(left=0, right=1, top=1, bottom=0)
# 设置字体
plt.rcParams['font.family'] = 'sans-serif'
plt.rcParams['font.sans-serif'] = ['Arial Unicode MS'] # 确保字体可用
# 创建网格,顶部为日期行,下方为数据行
# 使用高度(英寸)作为比率,GridSpec会自动归一化
gs = gridspec.GridSpec(
num_rows + 1, NUM_COLS,
hspace=0, wspace=0, # 无单元格间距
height_ratios=[date_header_height_in] + [cell_height_in] * num_rows,
figure=fig
)
# --- 3. 补全和排序数据 ---
data_values = data.values.tolist()
while len(data_values) % NUM_COLS != 0:
data_values.append(['', ''])
rows_per_col_layout = math.ceil(len(data_values) / NUM_COLS)
sorted_data = [['', '']] * len(data_values)
for i, item in enumerate(data_values):
if item[0] and item[1]:
row_in_col = i % rows_per_col_layout
col_idx = i // rows_per_col_layout
new_index = row_in_col * NUM_COLS + col_idx
if new_index < len(sorted_data):
sorted_data[new_index] = item
# --- 4. 绘制数据单元格 ---
for idx, (hall, end_time) in enumerate(sorted_data):
if hall and end_time:
row_grid = idx // NUM_COLS + 1 # +1 因为日期行占了第0行
col_grid = idx % NUM_COLS
ax = fig.add_subplot(gs[row_grid, col_grid])
# --- 设置点状虚线边框 ---
for spine in ax.spines.values():
spine.set_visible(True)
spine.set_linestyle((0, (1, 2))) # 点状线: (offset, (on_length, off_length))
spine.set_color(BORDER_COLOR)
spine.set_linewidth(0.75) # 点状线可能需要稍粗一点才清晰
# 绘制居中对齐的文本
display_text = f"{hall}{end_time}"
ax.text(0.5, 0.5, display_text,
fontsize=base_fontsize,
fontweight='bold',
ha='center', va='center',
transform=ax.transAxes)
ax.set_xticks([])
ax.set_yticks([])
ax.set_facecolor('none')
# --- 5. 绘制日期标题 ---
ax_date = fig.add_subplot(gs[0, :])
ax_date.text(0.01, 0.5, f"{date_str} {title}",
fontsize=base_fontsize * 0.5, # 日期字体稍小
color=DATE_COLOR, fontweight='bold',
ha='left', va='center',
transform=ax_date.transAxes)
ax_date.set_axis_off() # 完全隐藏日期行的边框和刻度
ax_date.set_facecolor('none')
return fig
# --- 生成并保存图形 ---
fig_for_output = generate_figure()
# 保存为 PNG
png_buffer = io.BytesIO()
fig_for_output.savefig(png_buffer, format='png') # 无需 bbox_inches='tight'
png_buffer.seek(0)
png_base64 = base64.b64encode(png_buffer.getvalue()).decode()
# 保存为 PDF
pdf_buffer = io.BytesIO()
with PdfPages(pdf_buffer) as pdf:
pdf.savefig(fig_for_output) # 无需 bbox_inches='tight'
pdf_buffer.seek(0)
pdf_base64 = base64.b64encode(pdf_buffer.getvalue()).decode()
plt.close(fig_for_output) # 关闭图形,释放内存
return {
'png': f'data:image/png;base64,{png_base64}',
'pdf': f'data:application/pdf;base64,{pdf_base64}'
}
def display_pdf(base64_pdf):
"""在Streamlit中嵌入显示PDF"""
pdf_display = f'<iframe src="{base64_pdf}" width="100%" height="800" type="application/pdf"></iframe>'
return pdf_display
# --- Streamlit 界面 ---
st.set_page_config(page_title="散厅时间快捷打印", layout="wide")
st.title("散厅时间快捷打印")
uploaded_file = st.file_uploader("上传【放映场次核对表.xls】文件", type=["xls"])
if uploaded_file:
part1, part2, date_str = process_schedule(uploaded_file)
if part1 is not None and part2 is not None:
# 生成包含 PNG 和 PDF 的字典
part1_output = create_print_layout(part1, "A", date_str)
part2_output = create_print_layout(part2, "C", date_str)
col1, col2 = st.columns(2)
with col1:
st.subheader("白班散场预览(时间 ≤ 17:30)")
if part1_output:
tab1_1, tab1_2 = st.tabs(["PDF 预览", "PNG 预览"])
with tab1_1:
st.markdown(display_pdf(part1_output['pdf']), unsafe_allow_html=True)
with tab1_2:
st.image(part1_output['png'])
else:
st.info("白班部分没有数据")
with col2:
st.subheader("夜班散场预览(时间 > 17:30)")
if part2_output:
tab2_1, tab2_2 = st.tabs(["PDF 预览", "PNG 预览"])
with tab2_1:
st.markdown(display_pdf(part2_output['pdf']), unsafe_allow_html=True)
with tab2_2:
st.image(part2_output['png'])
else:
st.info("夜班部分没有数据")