Spaces:
Running
Running
import pandas as pd | |
import streamlit as st | |
from datetime import datetime, timedelta | |
import matplotlib.pyplot as plt | |
import io | |
import base64 | |
import math | |
from matplotlib.backends.backend_pdf import PdfPages | |
# --- Constants --- | |
SPLIT_TIME = "17:30" | |
BUSINESS_START = "09:30" | |
BUSINESS_END = "01:30" | |
BORDER_COLOR = 'grey' # Changed to grey for the new design | |
DATE_COLOR = '#A9A9A9' | |
def process_schedule(file): | |
""" | |
Processes the uploaded Excel file to extract, clean, and sort screening times. | |
""" | |
try: | |
# Read Excel, skipping header rows | |
df = pd.read_excel(file, skiprows=8) | |
# Extract required columns (G, H, J) | |
df = df.iloc[:, [6, 7, 9]] | |
df.columns = ['Hall', 'StartTime', 'EndTime'] | |
# Clean data: drop rows with missing values | |
df = df.dropna(subset=['Hall', 'StartTime', 'EndTime']) | |
# Format Hall to "# " format | |
df['Hall'] = df['Hall'].str.extract(r'(\d+)').astype(str) + ' ' | |
# Convert time columns to datetime objects | |
base_date = datetime.today().date() | |
df['StartTime'] = pd.to_datetime(df['StartTime']) | |
df['EndTime'] = pd.to_datetime(df['EndTime']) | |
# --- Handle overnight screenings --- | |
# If a show ends after midnight (e.g., 1:30 AM), it belongs to the previous day's schedule. | |
# We handle this by adding a day to its datetime object. | |
for idx, row in df.iterrows(): | |
if row['EndTime'].hour < 9: # Assuming any end time before 9 AM is part of the previous night | |
df.at[idx, 'EndTime'] = row['EndTime'] + timedelta(days=1) | |
# Create a comparable time column that correctly handles the business day logic | |
df['time_for_comparison'] = df['EndTime'] | |
# Sort screenings by their end time | |
df = df.sort_values('EndTime') | |
# Split data into day and night shifts | |
split_datetime = datetime.combine(base_date, datetime.strptime(SPLIT_TIME, "%H:%M").time()) | |
part1 = df[df['time_for_comparison'] <= split_datetime].copy() | |
part2 = df[df['time_for_comparison'] > split_datetime].copy() | |
# Format the time display string (e.g., "5:30") | |
for part in [part1, part2]: | |
part['EndTime'] = part['EndTime'].dt.strftime('%-I:%M') | |
# Precisely read the date from cell C6 | |
date_df = pd.read_excel(file, skiprows=5, nrows=1, usecols=[2], header=None) | |
date_cell = date_df.iloc[0, 0] | |
try: | |
if isinstance(date_cell, str): | |
date_str = datetime.strptime(date_cell, '%Y-%m-%d').strftime('%Y-%m-%d') | |
else: | |
date_str = pd.to_datetime(date_cell).strftime('%Y-%m-%d') | |
except: | |
date_str = datetime.today().strftime('%Y-%m-%d') | |
return part1[['Hall', 'EndTime']], part2[['Hall', 'EndTime']], date_str | |
except Exception as e: | |
st.error(f"Error processing file: {str(e)}") | |
return None, None, None | |
def _draw_grid_on_figure(fig, data, title, date_str): | |
""" | |
Internal helper function to draw the new grid layout onto a Matplotlib figure. | |
""" | |
plt.rcParams['font.family'] = 'sans-serif' | |
plt.rcParams['font.sans-serif'] = ['Arial Unicode MS'] # Font that supports Chinese characters | |
total_items = len(data) | |
if total_items == 0: | |
return | |
num_cols = 3 | |
num_rows = math.ceil(total_items / num_cols) | |
A5_WIDTH_IN = 5.83 | |
A5_HEIGHT_IN = 8.27 | |
# 1. Redesign layout based on precise grid calculations | |
margin_y = (A5_HEIGHT_IN / num_rows) / 4 | |
margin_x = margin_y # Use symmetric margins for a cleaner look | |
# Prevent margins from becoming too large on pages with few items | |
if A5_WIDTH_IN < 2 * margin_x or A5_HEIGHT_IN < 2 * margin_y: | |
margin_x = A5_WIDTH_IN / 10 | |
margin_y = A5_HEIGHT_IN / 10 | |
printable_width = A5_WIDTH_IN - 2 * margin_x | |
printable_height = A5_HEIGHT_IN - 2 * margin_y | |
cell_width = printable_width / num_cols | |
cell_height = printable_height / num_rows | |
# Prepare data: Sort into column-first (Z-style) order for layout | |
data_values = data.values.tolist() | |
while len(data_values) % num_cols != 0: | |
data_values.append(['', '']) # Pad data for a full grid | |
rows_per_col_layout = math.ceil(len(data_values) / num_cols) | |
sorted_data = [['', '']] * len(data_values) | |
for i, item in enumerate(data_values): | |
if item[0] and item[1]: | |
row_in_col = i % rows_per_col_layout | |
col_idx = i // rows_per_col_layout | |
new_index = row_in_col * num_cols + col_idx | |
if new_index < len(sorted_data): | |
sorted_data[new_index] = item | |
# --- Draw each cell onto the figure --- | |
item_counter = 0 | |
for idx, (hall, end_time) in enumerate(sorted_data): | |
if not (hall and end_time): | |
continue | |
item_counter += 1 | |
row_grid = idx // num_cols | |
col_grid = idx % num_cols | |
# Calculate position for each cell's axes in Figure coordinates [left, bottom, width, height] | |
ax_left_in = margin_x + col_grid * cell_width | |
ax_bottom_in = margin_y + (num_rows - 1 - row_grid) * cell_height # Y-axis from bottom | |
ax_pos = [ | |
ax_left_in / A5_WIDTH_IN, | |
ax_bottom_in / A5_HEIGHT_IN, | |
cell_width / A5_WIDTH_IN, | |
cell_height / A5_HEIGHT_IN, | |
] | |
ax = fig.add_axes(ax_pos) | |
# 2. Change Cell Border to a gray, dotted line | |
for spine in ax.spines.values(): | |
spine.set_visible(True) | |
spine.set_linestyle(':') # Dotted line style | |
spine.set_edgecolor(BORDER_COLOR) | |
spine.set_linewidth(1) | |
# 4. Add Cell Index Number | |
ax.text(0.07, 0.93, str(item_counter), | |
transform=ax.transAxes, | |
fontsize=9, | |
color='grey', | |
ha='left', | |
va='top') | |
# 3. Adjust Cell Content | |
display_text = f"{hall}{end_time}" | |
# Dynamically estimate font size to fill 90% of the cell width | |
# This is a heuristic that provides a good balance of size and spacing. | |
font_scale_factor = 1.7 | |
estimated_fontsize = (cell_width * 72 / len(display_text)) * font_scale_factor * 0.9 | |
max_fontsize = cell_height * 72 * 0.6 # Cap font size to 60% of cell height | |
final_fontsize = min(estimated_fontsize, max_fontsize) | |
ax.text(0.5, 0.5, display_text, | |
fontsize=final_fontsize, | |
fontweight='bold', | |
ha='center', | |
va='center', | |
transform=ax.transAxes) | |
ax.set_xticks([]) | |
ax.set_yticks([]) | |
# Add date and title to the top margin of the figure | |
title_fontsize = margin_y * 72 * 0.3 # Scale title font size with margin | |
fig.text(margin_x / A5_WIDTH_IN, 1 - (margin_y * 0.5 / A5_HEIGHT_IN), | |
f"{date_str} {title}", | |
fontsize=title_fontsize, | |
color=DATE_COLOR, | |
fontweight='bold', | |
ha='left', | |
va='center') | |
def create_print_layout(data, title, date_str): | |
""" | |
Creates the final print-ready output in both PNG and PDF formats using the new grid layout. | |
""" | |
if data.empty: | |
return None | |
# --- Create separate figures for PNG and PDF to ensure no cross-contamination --- | |
png_fig = plt.figure(figsize=(5.83, 8.27), dpi=300) | |
pdf_fig = plt.figure(figsize=(5.83, 8.27), dpi=300) | |
# --- Draw the layout on both figures --- | |
_draw_grid_on_figure(png_fig, data, title, date_str) | |
_draw_grid_on_figure(pdf_fig, data, title, date_str) | |
# --- Save PNG to a memory buffer --- | |
png_buffer = io.BytesIO() | |
png_fig.savefig(png_buffer, format='png', bbox_inches='tight', pad_inches=0.02) | |
png_buffer.seek(0) | |
png_base64 = base64.b64encode(png_buffer.getvalue()).decode() | |
plt.close(png_fig) | |
# --- Save PDF to a memory buffer --- | |
pdf_buffer = io.BytesIO() | |
with PdfPages(pdf_buffer) as pdf: | |
pdf.savefig(pdf_fig, bbox_inches='tight', pad_inches=0.02) | |
pdf_buffer.seek(0) | |
pdf_base64 = base64.b64encode(pdf_buffer.getvalue()).decode() | |
plt.close(pdf_fig) | |
return { | |
'png': f'data:image/png;base64,{png_base64}', | |
'pdf': f'data:application/pdf;base64,{pdf_base64}' | |
} | |
def display_pdf(base64_pdf): | |
""" | |
Generates the HTML to embed and display a PDF in Streamlit. | |
""" | |
pdf_display = f'<iframe src="data:application/pdf;base64,{base64_pdf}" width="100%" height="800" type="application/pdf"></iframe>' | |
return pdf_display | |
# --- Streamlit User Interface --- | |
st.set_page_config(page_title="散厅时间快捷打印", layout="wide") | |
st.title("散厅时间快捷打印") | |
uploaded_file = st.file_uploader("上传【放映场次核对表.xls】文件", type=["xls", "xlsx"]) | |
if uploaded_file: | |
part1_data, part2_data, date_string = process_schedule(uploaded_file) | |
if part1_data is not None and part2_data is not None: | |
# Generate layouts for both day and night shifts | |
part1_output = create_print_layout(part1_data, "A", date_string) | |
part2_output = create_print_layout(part2_data, "C", date_string) | |
col1, col2 = st.columns(2) | |
with col1: | |
st.subheader("白班散场预览 (时间 ≤ 17:30)") | |
if part1_output: | |
# Use tabs for PDF and PNG previews | |
tab1_1, tab1_2 = st.tabs(["PDF 预览", "PNG 预览"]) | |
with tab1_1: | |
st.markdown(display_pdf(part1_output['pdf']), unsafe_allow_html=True) | |
with tab1_2: | |
st.image(part1_output['png']) | |
else: | |
st.info("白班部分没有数据") | |
with col2: | |
st.subheader("夜班散场预览 (时间 > 17:30)") | |
if part2_output: | |
# Use tabs for PDF and PNG previews | |
tab2_1, tab2_2 = st.tabs(["PDF 预览", "PNG 预览"]) | |
with tab2_1: | |
st.markdown(display_pdf(part2_output['pdf']), unsafe_allow_html=True) | |
with tab2_2: | |
st.image(part2_output['png']) | |
else: | |
st.info("夜班部分没有数据") |