end-print / app.py
Ethscriptions's picture
Update app.py
8319975 verified
raw
history blame
11.5 kB
import pandas as pd
import streamlit as st
from datetime import datetime, timedelta
import matplotlib.pyplot as plt
import io
import base64
import matplotlib.gridspec as gridspec
import math
from matplotlib.backends.backend_pdf import PdfPages
# The 'FancyBboxPatch' is no longer needed for the new border style.
SPLIT_TIME = "17:30"
BUSINESS_START = "09:30"
BUSINESS_END = "01:30"
BORDER_COLOR = 'gray' # Changed to gray for the new style
DATE_COLOR = '#A9A9A9'
def process_schedule(file):
"""处理上传的 Excel 文件,生成排序和分组后的打印内容"""
try:
# 读取 Excel,跳过前 8 行
df = pd.read_excel(file, skiprows=8)
# 提取所需列 (G9, H9, J9)
df = df.iloc[:, [6, 7, 9]] # G, H, J 列
df.columns = ['Hall', 'StartTime', 'EndTime']
# 清理数据
df = df.dropna(subset=['Hall', 'StartTime', 'EndTime'])
# 转换影厅格式为 "#" 格式 (移除末尾空格)
df['Hall'] = df['Hall'].str.extract(r'(\d+)号').astype(str)
# 保存原始时间字符串用于诊断
df['original_end'] = df['EndTime']
# 转换时间为 datetime 对象
base_date = datetime.today().date()
df['StartTime'] = pd.to_datetime(df['StartTime'])
df['EndTime'] = pd.to_datetime(df['EndTime'])
# 设置基准时间
business_start = datetime.strptime(f"{base_date} {BUSINESS_START}", "%Y-%m-%d %H:%M")
business_end = datetime.strptime(f"{base_date} {BUSINESS_END}", "%Y-%m-%d %H:%M")
# 处理跨天情况
if business_end < business_start:
business_end += timedelta(days=1)
# 标准化所有时间到同一天
for idx, row in df.iterrows():
end_time = row['EndTime']
if end_time.hour < 9:
df.at[idx, 'EndTime'] = end_time + timedelta(days=1)
if row['StartTime'].hour >= 21 and end_time.hour < 9:
df.at[idx, 'EndTime'] = end_time + timedelta(days=1)
# 筛选营业时间内的场次
df['time_for_comparison'] = df['EndTime'].apply(
lambda x: datetime.combine(base_date, x.time())
)
df.loc[df['time_for_comparison'].dt.hour < 9, 'time_for_comparison'] += timedelta(days=1)
valid_times = (
((df['time_for_comparison'] >= datetime.combine(base_date, business_start.time())) &
(df['time_for_comparison'] <= datetime.combine(base_date + timedelta(days=1), business_end.time())))
)
df = df[valid_times]
# 按散场时间排序
df = df.sort_values('EndTime')
# 分割数据
split_time_obj = datetime.strptime(SPLIT_TIME, "%H:%M").time()
split_datetime = datetime.combine(base_date, split_time_obj)
part1 = df[df['time_for_comparison'] <= split_datetime].copy()
part2 = df[df['time_for_comparison'] > split_datetime].copy()
# 格式化时间显示
for part in [part1, part2]:
# Use '%-H' for 24-hour format without leading zero on Linux/macOS
# Use '%#H' on Windows. A more cross-platform way is to format and remove later.
# Let's stick to '%H:%M' for universal 24-hour format e.g., "09:30"
part['EndTime'] = part['EndTime'].dt.strftime('%H:%M')
# 关键修改:精确读取C6单元格
date_df = pd.read_excel(
file,
skiprows=5, # 跳过前5行(0-4)
nrows=1, # 只读1行
usecols=[2], # 第三列(C列)
header=None # 无表头
)
date_cell = date_df.iloc[0, 0]
try:
# 处理不同日期格式
if isinstance(date_cell, str):
date_str = datetime.strptime(date_cell, '%Y-%m-%d').strftime('%Y-%m-%d')
else:
date_str = pd.to_datetime(date_cell).strftime('%Y-%m-%d')
except:
date_str = datetime.today().strftime('%Y-%m-%d')
return part1[['Hall', 'EndTime']], part2[['Hall', 'EndTime']], date_str
except Exception as e:
st.error(f"处理文件时出错: {str(e)}")
return None, None, None
def create_print_layout(data, title, date_str):
"""创建打印布局 (PNG 和 PDF)"""
if data.empty:
return None
# --- A5 Paper Dimensions in inches for precise layout ---
A5_WIDTH_IN = 5.83
A5_HEIGHT_IN = 8.27
NUM_COLS = 3
# --- Create Figures for PNG and PDF ---
png_fig = plt.figure(figsize=(A5_WIDTH_IN, A5_HEIGHT_IN), dpi=300)
pdf_fig = plt.figure(figsize=(A5_WIDTH_IN, A5_HEIGHT_IN), dpi=300)
# --- Internal drawing function to apply changes to both figures ---
def process_figure(fig):
plt.rcParams['font.family'] = 'sans-serif'
plt.rcParams['font.sans-serif'] = ['Arial Unicode MS']
total_items = len(data)
if total_items == 0:
plt.close(fig)
return
# --- 1. Redesign Print Layout ---
# Calculate number of rows needed
num_rows = math.ceil(total_items / NUM_COLS)
# Remove all padding from the figure edges
fig.subplots_adjust(left=0, right=1, top=0.95, bottom=0)
# Create a grid with no space between cells. A small top row for the date.
gs = gridspec.GridSpec(
num_rows + 1,
NUM_COLS,
hspace=0,
wspace=0,
height_ratios=[0.3] + [1] * num_rows, # Make date row shorter
figure=fig
)
data_values = data.values.tolist()
# Pad data with empty values to make it a multiple of NUM_COLS
while len(data_values) % NUM_COLS != 0:
data_values.append(['', ''])
# --- Sort data column-first (Z-pattern) ---
rows_per_col_layout = math.ceil(len(data_values) / NUM_COLS)
sorted_data = [['', '']] * len(data_values)
for i, item in enumerate(data_values):
if item[0] and item[1]:
row_in_col = i % rows_per_col_layout
col_idx = i // rows_per_col_layout
new_index = row_in_col * NUM_COLS + col_idx
if new_index < len(sorted_data):
sorted_data[new_index] = item
# --- Dynamic Font Size Calculation ---
def get_dynamic_fontsize(text, cell_width_inches):
if not text:
return 1
# This factor is empirical, adjusts font size to fill ~90% of cell width
# A lower factor (e.g., 0.5) results in larger text.
ASPECT_RATIO_FACTOR = 0.55
num_chars = len(text)
# Formula: (target_width_points) / (num_characters * aspect_ratio)
fontsize = (cell_width_inches * 0.9 * 72) / (num_chars * ASPECT_RATIO_FACTOR)
return max(10, fontsize) # Return at least size 10
cell_width_inches = A5_WIDTH_IN / NUM_COLS
# --- Draw each data cell ---
for idx, (hall, end_time) in enumerate(sorted_data):
if hall and end_time:
row_grid = idx // NUM_COLS + 1 # +1 to skip date row
col_grid = idx % NUM_COLS
ax = fig.add_subplot(gs[row_grid, col_grid])
display_text = f"{hall} {end_time}"
# Calculate optimal font size
fontsize = get_dynamic_fontsize(display_text, cell_width_inches)
ax.text(0.5, 0.5, display_text,
fontsize=fontsize,
fontweight='bold',
ha='center',
va='center',
transform=ax.transAxes)
# --- 2. Change Cell Border ---
# Set a dotted gray border
for spine in ax.spines.values():
spine.set_visible(True)
spine.set_linestyle((0, (1, 2))) # Dotted line: (0, (on, off))
spine.set_edgecolor(BORDER_COLOR)
spine.set_linewidth(1.5)
ax.set_xticks([])
ax.set_yticks([])
ax.set_facecolor('none')
# --- Add date and title information to the top row ---
ax_date = fig.add_subplot(gs[0, :])
ax_date.text(0.01, 0.5, f"{date_str} {title}",
fontsize=12,
color=DATE_COLOR,
fontweight='bold',
ha='left',
va='center',
transform=ax_date.transAxes)
# Hide the border for the date cell
for spine in ax_date.spines.values():
spine.set_visible(False)
ax_date.set_xticks([])
ax_date.set_yticks([])
ax_date.set_facecolor('none')
# Process both the PNG and PDF figures with the new layout
process_figure(png_fig)
process_figure(pdf_fig)
# --- Save PNG ---
png_buffer = io.BytesIO()
# Use pad_inches=0 because we handled margins with subplots_adjust
png_fig.savefig(png_buffer, format='png', pad_inches=0)
png_buffer.seek(0)
png_base64 = base64.b64encode(png_buffer.getvalue()).decode()
plt.close(png_fig)
# --- Save PDF ---
pdf_buffer = io.BytesIO()
with PdfPages(pdf_buffer) as pdf:
# Use pad_inches=0 for PDF as well
pdf.savefig(pdf_fig, pad_inches=0)
pdf_buffer.seek(0)
pdf_base64 = base64.b64encode(pdf_buffer.getvalue()).decode()
plt.close(pdf_fig)
return {
'png': f'data:image/png;base64,{png_base64}',
'pdf': f'data:application/pdf;base64,{pdf_base64}'
}
# --- PDF display function ---
def display_pdf(base64_pdf):
"""Embeds PDF in Streamlit for display"""
pdf_display = f'<iframe src="{base64_pdf}" width="100%" height="800" type="application/pdf"></iframe>'
return pdf_display
# Streamlit UI
st.set_page_config(page_title="散厅时间快捷打印", layout="wide")
st.title("散厅时间快捷打印")
uploaded_file = st.file_uploader("上传【放映场次核对表.xls】文件", type=["xls"])
if uploaded_file:
part1, part2, date_str = process_schedule(uploaded_file)
if part1 is not None and part2 is not None:
# Generate outputs containing both PNG and PDF data
part1_output = create_print_layout(part1, "A", date_str)
part2_output = create_print_layout(part2, "C", date_str)
col1, col2 = st.columns(2)
with col1:
st.subheader("白班散场预览(时间 ≤ 17:30)")
if part1_output:
# Use tabs to show both PDF and PNG previews
tab1_1, tab1_2 = st.tabs(["PDF 预览", "PNG 预览"])
with tab1_1:
st.markdown(display_pdf(part1_output['pdf']), unsafe_allow_html=True)
with tab1_2:
st.image(part1_output['png'])
else:
st.info("白班部分没有数据")
with col2:
st.subheader("夜班散场预览(时间 > 17:30)")
if part2_output:
# Use tabs to show both PDF and PNG previews
tab2_1, tab2_2 = st.tabs(["PDF 预览", "PNG 预览"])
with tab2_1:
st.markdown(display_pdf(part2_output['pdf']), unsafe_allow_html=True)
with tab2_2:
st.image(part2_output['png'])
else:
st.info("夜班部分没有数据")