Spaces:
Running
Running
import pandas as pd | |
import streamlit as st | |
from datetime import datetime, timedelta | |
import matplotlib.pyplot as plt | |
import io | |
import base64 | |
import matplotlib.gridspec as gridspec | |
import math | |
from matplotlib.backends.backend_pdf import PdfPages | |
from matplotlib.patches import Rectangle # Replaced FancyBboxPatch | |
# --- Constants --- | |
SPLIT_TIME = "17:30" | |
BUSINESS_START = "09:30" | |
BUSINESS_END = "01:30" | |
BORDER_COLOR = '#A9A9A9' | |
DATE_COLOR = '#A9A9A9' | |
SEQ_COLOR = '#A9A9A9' # Color for the new serial number | |
def process_schedule(file): | |
"""处理上传的 Excel 文件,生成排序和分组后的打印内容""" | |
try: | |
# 读取 Excel,跳过前 8 行 | |
df = pd.read_excel(file, skiprows=8) | |
# 提取所需列 (G9, H9, J9) | |
df = df.iloc[:, [6, 7, 9]] # G, H, J 列 | |
df.columns = ['Hall', 'StartTime', 'EndTime'] | |
# 清理数据 | |
df = df.dropna(subset=['Hall', 'StartTime', 'EndTime']) | |
# 转换影厅格式为 "#号" 格式 | |
df['Hall'] = df['Hall'].str.extract(r'(\d+)号').astype(str) + ' ' | |
# 保存原始时间字符串用于诊断 | |
df['original_end'] = df['EndTime'] | |
# 转换时间为 datetime 对象 | |
base_date = datetime.today().date() | |
# Using errors='coerce' will turn unparseable times into NaT (Not a Time) | |
df['StartTime'] = pd.to_datetime(df['StartTime'], errors='coerce') | |
df['EndTime'] = pd.to_datetime(df['EndTime'], errors='coerce') | |
df = df.dropna(subset=['StartTime', 'EndTime']) # Drop rows where time conversion failed | |
# 设置基准时间 | |
business_start_time = datetime.strptime(BUSINESS_START, "%H:%M").time() | |
business_end_time = datetime.strptime(BUSINESS_END, "%H:%M").time() | |
# 处理跨天情况:结束时间小于开始时间,则结束时间加一天 | |
# This logic handles cases like 9:30 AM to 1:30 AM (next day) | |
df['EndTime_adjusted'] = df.apply( | |
lambda row: row['EndTime'] + timedelta(days=1) if row['EndTime'].time() < row['StartTime'].time() else row['EndTime'], | |
axis=1 | |
) | |
# 按散场时间排序 (using the adjusted time) | |
df = df.sort_values('EndTime_adjusted') | |
# 分割数据 | |
split_dt = datetime.strptime(SPLIT_TIME, "%H:%M").time() | |
part1 = df[df['EndTime_adjusted'].dt.time <= split_dt].copy() | |
part2 = df[df['EndTime_adjusted'].dt.time > split_dt].copy() | |
# 格式化时间显示 (use original EndTime for display) | |
for part in [part1, part2]: | |
part['EndTime_formatted'] = part['EndTime'].dt.strftime('%-I:%M') | |
# 读取日期单元格 C6 | |
date_df = pd.read_excel(file, skiprows=5, nrows=1, usecols=[2], header=None) | |
date_cell = date_df.iloc[0, 0] | |
try: | |
if isinstance(date_cell, str): | |
# Assuming format like '2023-10-27' | |
date_str = datetime.strptime(date_cell, '%Y-%m-%d').strftime('%Y-%m-%d') | |
else: | |
# Assuming it's a datetime object | |
date_str = pd.to_datetime(date_cell).strftime('%Y-%m-%d') | |
except: | |
date_str = datetime.today().strftime('%Y-%m-%d') | |
return part1[['Hall', 'EndTime_formatted']], part2[['Hall', 'EndTime_formatted']], date_str | |
except Exception as e: | |
st.error(f"处理文件时出错: {str(e)}") | |
return None, None, None | |
def create_print_layout(data, title, date_str): | |
""" | |
创建符合新要求的打印布局 (PNG 和 PDF)。 | |
1. 动态计算边距。 | |
2. 使用灰色虚线圆点作为单元格边框。 | |
3. 单元格内容区域为单元格的90%。 | |
4. 在左上角添加灰色序号。 | |
""" | |
if data.empty: | |
return None | |
# --- Constants --- | |
A5_WIDTH_IN = 5.83 | |
A5_HEIGHT_IN = 8.27 | |
DPI = 300 | |
NUM_COLS = 3 | |
# --- Setup Figure --- | |
fig = plt.figure(figsize=(A5_WIDTH_IN, A5_HEIGHT_IN), dpi=DPI) | |
# --- Font Setup --- | |
plt.rcParams['font.family'] = 'sans-serif' | |
plt.rcParams['font.sans-serif'] = ['Arial Unicode MS', 'Heiti TC', 'sans-serif'] | |
# --- Data Preparation --- | |
total_items = len(data) | |
# Augment data with an original index for numbering | |
data_values_with_index = [(i, row) for i, row in enumerate(data.values.tolist())] | |
# Pad data to be a multiple of NUM_COLS | |
padded_total = math.ceil(total_items / NUM_COLS) * NUM_COLS | |
while len(data_values_with_index) < padded_total: | |
data_values_with_index.append((None, ['', ''])) | |
num_rows = padded_total // NUM_COLS | |
# --- Layout Calculation (Request 1) --- | |
if num_rows > 0: | |
# "A5 paper height / num_rows / 4 is the padding for all sides" | |
padding_in = (A5_HEIGHT_IN / num_rows / 4) | |
# Cap padding to prevent it from being excessively large | |
padding_in = min(padding_in, 0.5) | |
else: | |
padding_in = 0.25 # Default padding if no rows | |
# Convert padding to relative figure coordinates for subplots_adjust | |
left_margin = padding_in / A5_WIDTH_IN | |
right_margin = 1 - left_margin | |
bottom_margin = padding_in / A5_HEIGHT_IN | |
top_margin = 1 - bottom_margin | |
# Adjust overall figure margins | |
fig.subplots_adjust(left=left_margin, right=right_margin, top=top_margin, bottom=bottom_margin, hspace=0.4, wspace=0.4) | |
# --- Grid & Font Size --- | |
gs = gridspec.GridSpec(num_rows + 1, NUM_COLS, height_ratios=[0.2] + [1] * num_rows, figure=fig) | |
if num_rows > 0: | |
content_area_height_in = A5_HEIGHT_IN * (top_margin - bottom_margin) | |
cell_height_in = content_area_height_in / num_rows * (1 - fig.subplotpars.hspace) | |
base_fontsize = min(40, max(10, cell_height_in * 72 * 0.4)) # 72 pt/inch, 40% of cell height | |
else: | |
base_fontsize = 20 | |
# --- Z-Sort (Column-major) Data for Layout --- | |
rows_per_col_layout = num_rows | |
sorted_data = [(None, ['',''])] * padded_total | |
for i, item_tuple in enumerate(data_values_with_index): | |
if item_tuple[0] is not None: | |
original_data_index = i # Index from the time-sorted list | |
row_in_col = original_data_index % rows_per_col_layout | |
col_idx = original_data_index // rows_per_col_layout | |
new_grid_index = row_in_col * NUM_COLS + col_idx | |
if new_grid_index < len(sorted_data): | |
sorted_data[new_grid_index] = item_tuple | |
# --- Drawing Logic --- | |
for grid_idx, item_tuple in enumerate(sorted_data): | |
original_index, (hall, end_time) = item_tuple | |
if original_index is not None: | |
row_grid = grid_idx // NUM_COLS + 1 # +1 because date is in row 0 | |
col_grid = grid_idx % NUM_COLS | |
ax = fig.add_subplot(gs[row_grid, col_grid]) | |
ax.set_axis_off() | |
# --- Cell Border (Request 2) & Content Area (Request 3) --- | |
# Draw a dotted rectangle. Content will be placed inside this. | |
# Making the rect slightly smaller creates a visual 90% area. | |
cell_border = Rectangle((0.05, 0.05), 0.9, 0.9, | |
edgecolor=BORDER_COLOR, | |
facecolor='none', | |
linestyle=(0, (1, 1.5)), # Dotted line with round caps | |
linewidth=1, | |
transform=ax.transAxes, | |
clip_on=False) | |
ax.add_patch(cell_border) | |
# --- Cell Content --- | |
display_text = f"{hall}{end_time}" | |
ax.text(0.5, 0.5, display_text, | |
fontsize=base_fontsize, | |
fontweight='bold', | |
ha='center', va='center', | |
transform=ax.transAxes) | |
# --- Cell Numbering (Request 4) --- | |
# Serial number is original_index + 1 | |
ax.text(0.12, 0.82, str(original_index + 1), | |
fontsize=base_fontsize * 0.5, | |
color=SEQ_COLOR, | |
fontweight='normal', | |
ha='center', va='center', | |
transform=ax.transAxes) | |
# --- Date Header --- | |
ax_date = fig.add_subplot(gs[0, :]) | |
ax_date.set_axis_off() | |
ax_date.text(0, 0.5, f"{date_str} {title}", | |
fontsize=base_fontsize * 0.6, | |
color=DATE_COLOR, | |
fontweight='bold', | |
ha='left', va='center', | |
transform=ax_date.transAxes) | |
# --- Save to Buffers --- | |
# Save PNG | |
png_buffer = io.BytesIO() | |
fig.savefig(png_buffer, format='png', bbox_inches='tight', pad_inches=0.02) | |
png_buffer.seek(0) | |
png_base64 = base64.b64encode(png_buffer.getvalue()).decode() | |
# Save PDF | |
pdf_buffer = io.BytesIO() | |
fig.savefig(pdf_buffer, format='pdf', bbox_inches='tight', pad_inches=0.02) | |
pdf_buffer.seek(0) | |
pdf_base64 = base64.b64encode(pdf_buffer.getvalue()).decode() | |
plt.close(fig) | |
return { | |
'png': f'data:image/png;base64,{png_base64}', | |
'pdf': f'data:application/pdf;base64,{pdf_base64}' | |
} | |
def display_pdf(base64_pdf): | |
"""在Streamlit中嵌入显示PDF""" | |
pdf_display = f'<iframe src="{base64_pdf}" width="100%" height="800" type="application/pdf"></iframe>' | |
return pdf_display | |
# --- Streamlit UI --- | |
st.set_page_config(page_title="散厅时间快捷打印", layout="wide") | |
st.title("散厅时间快捷打印") | |
uploaded_file = st.file_uploader("上传【放映场次核对表.xls】文件", type=["xls", "xlsx"]) | |
if uploaded_file: | |
# Use new column name 'EndTime_formatted' for display | |
part1, part2, date_str = process_schedule(uploaded_file) | |
if part1 is not None and part2 is not None: | |
part1_data_for_layout = part1[['Hall', 'EndTime_formatted']] | |
part2_data_for_layout = part2[['Hall', 'EndTime_formatted']] | |
part1_output = create_print_layout(part1_data_for_layout, "A", date_str) | |
part2_output = create_print_layout(part2_data_for_layout, "C", date_str) | |
col1, col2 = st.columns(2) | |
with col1: | |
st.subheader("白班散场预览(散场时间 ≤ 17:30)") | |
if part1_output: | |
tab1_1, tab1_2 = st.tabs(["PDF 预览", "PNG 预览"]) | |
with tab1_1: | |
st.markdown(display_pdf(part1_output['pdf']), unsafe_allow_html=True) | |
with tab1_2: | |
st.image(part1_output['png']) | |
else: | |
st.info("白班部分没有数据") | |
with col2: | |
st.subheader("夜班散场预览(散场时间 > 17:30)") | |
if part2_output: | |
tab2_1, tab2_2 = st.tabs(["PDF 预览", "PNG 预览"]) | |
with tab2_1: | |
st.markdown(display_pdf(part2_output['pdf']), unsafe_allow_html=True) | |
with tab2_2: | |
st.image(part2_output['png']) | |
else: | |
st.info("夜班部分没有数据") |