Shamima commited on
Commit
cba16b9
·
1 Parent(s): e58665e

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +42 -0
app.py ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+ """Gradio-regression.ipynb
3
+
4
+ Automatically generated by Colaboratory.
5
+
6
+ Original file is located at
7
+ https://colab.research.google.com/drive/1qmfhcPafAIfczazACroyAYyRohdQbklK
8
+ """
9
+ import numpy as np
10
+ import matplotlib.pyplot as plt
11
+ import seaborn as sns
12
+ import gradio as gr
13
+ from sklearn.linear_model import Ridge, LinearRegression
14
+ from sklearn.model_selection import train_test_split
15
+ np.random.seed(2)
16
+
17
+ X = 2 * np.random.rand(100, 1)
18
+ y = 4 + 3 * X
19
+
20
+ X_train, X_test, y_train, y_test = train_test_split(
21
+ X, y, test_size=0.1, random_state=42)
22
+
23
+ def build_model(alpha):
24
+ r_reg = Ridge(alpha=alpha)
25
+ r_reg.fit(X_train, y_train)
26
+ return r_reg
27
+
28
+ def predict(alpha):
29
+ ridge_reg = build_model(alpha)
30
+ preds = ridge_reg.predict(X_test)
31
+ fig = plt.figure()
32
+ plt.plot(X_test, y_test, "r-")
33
+ plt.plot(X_test, preds, "b--")
34
+ plt.title("Effect of regularization parameter on Ridge regression")
35
+ plt.ylabel("Y")
36
+ plt.xlabel("X")
37
+ return plt
38
+
39
+ inputs = gr.Number()
40
+ outputs = gr.Plot()
41
+ gr.Interface(fn = predict, inputs = inputs, outputs = outputs).launch()
42
+