llk010502's picture
Update app.py
aadd767 verified
raw
history blame
9.42 kB
import os, json, time, random
from collections import defaultdict
from datetime import date, datetime, timedelta
from dotenv import load_dotenv
import gradio as gr
import pandas as pd
import finnhub
from openai import OpenAI
from io import StringIO
import requests
# Load environment variables from .env file
load_dotenv()
# ---------- 0 CONFIG ---------------------------------------------------------
OPENAI_MODEL = os.getenv("OPENAI_MODEL", "gpt-4o-mini")
FINNHUB_KEY = os.getenv("FINNHUB_API_KEY")
ALPHA_KEY = os.getenv("ALPHAVANTAGE_API_KEY")
if not FINNHUB_KEY:
raise RuntimeError("FINNHUB_API_KEY not set")
client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
finnhub_client = finnhub.Client(api_key=FINNHUB_KEY)
SYSTEM_PROMPT = (
"You are a seasoned stock-market analyst. "
"Given recent company news and optional basic financials, "
"return:\n"
"[Positive Developments] – 2-4 bullets\n"
"[Potential Concerns] – 2-4 bullets\n"
"[Prediction & Analysis] – a one-week price outlook with rationale."
)
# ---------- 1 DATE / UTILITY HELPERS ----------------------------------------
def today() -> str:
return date.today().strftime("%Y-%m-%d")
def n_weeks_before(date_string: str, n: int) -> str:
return (datetime.strptime(date_string, "%Y-%m-%d") -
timedelta(days=7 * n)).strftime("%Y-%m-%d")
# ---------- 2 DATA FETCHING --------------------------------------------------
def get_stock_data(symbol: str, steps: list[str]) -> pd.DataFrame:
if not ALPHA_KEY:
raise RuntimeError("ALPHAVANTAGE_API_KEY is Missing")
# 免费端点:TIME_SERIES_DAILY :contentReference[oaicite:8]{index=8}
url = (
"https://www.alphavantage.co/query"
"?function=TIME_SERIES_DAILY"
f"&symbol={symbol}"
f"&apikey={ALPHA_KEY}"
"&datatype=csv"
"&outputsize=full"
)
# 重试 3 次
text = None
for attempt in range(3):
resp = requests.get(url, timeout=10)
if not resp.ok:
time.sleep(1)
continue
text = resp.text.strip()
if text.startswith("{"):
info = resp.json()
msg = info.get("Note") or info.get("Error Message") or str(info)
raise RuntimeError(f"Alpha Vantage Return Error:{msg}")
break
if not text:
raise RuntimeError(f"Alpha Vantage Connection Error:{url}")
df = pd.read_csv(StringIO(text))
date_col = "timestamp" if "timestamp" in df.columns else df.columns[0]
df[date_col] = pd.to_datetime(df[date_col])
df = df.sort_values(date_col).set_index(date_col)
data = {"Start Date": [], "End Date": [], "Start Price": [], "End Price": []}
for i in range(len(steps) - 1):
s_date = pd.to_datetime(steps[i])
e_date = pd.to_datetime(steps[i+1])
seg = df.loc[s_date:e_date]
if seg.empty:
raise RuntimeError(
f"Alpha Vantage 无法获取 {symbol}{steps[i]}{steps[i+1]} 的数据"
)
data["Start Date"].append(seg.index[0])
data["Start Price"].append(seg["close"].iloc[0])
data["End Date"].append(seg.index[-1])
data["End Price"].append(seg["close"].iloc[-1])
# Limits:5 times/min
time.sleep(12)
return pd.DataFrame(data)
def current_basics(symbol: str, curday: str) -> dict:
raw = finnhub_client.company_basic_financials(symbol, "all")
if not raw["series"]:
return {}
merged = defaultdict(dict)
for metric, vals in raw["series"]["quarterly"].items():
for v in vals:
merged[v["period"]][metric] = v["v"]
latest = max((p for p in merged if p <= curday), default=None)
if latest is None:
return {}
d = dict(merged[latest])
d["period"] = latest
return d
def attach_news(symbol: str, df: pd.DataFrame) -> pd.DataFrame:
news_col = []
for _, row in df.iterrows():
start = row["Start Date"].strftime("%Y-%m-%d")
end = row["End Date"].strftime("%Y-%m-%d")
time.sleep(1) # Finnhub QPM guard
weekly = finnhub_client.company_news(symbol, _from=start, to=end)
weekly_fmt = [
{
"date" : datetime.fromtimestamp(n["datetime"]).strftime("%Y%m%d%H%M%S"),
"headline": n["headline"],
"summary" : n["summary"],
}
for n in weekly
]
weekly_fmt.sort(key=lambda x: x["date"])
news_col.append(json.dumps(weekly_fmt))
df["News"] = news_col
return df
# ---------- 3 PROMPT CONSTRUCTION -------------------------------------------
def sample_news(news: list[str], k: int = 5) -> list[str]:
if len(news) <= k: return news
return [news[i] for i in sorted(random.sample(range(len(news)), k))]
def make_prompt(symbol: str, df: pd.DataFrame, curday: str, use_basics=False) -> str:
# Company profile
prof = finnhub_client.company_profile2(symbol=symbol)
company_blurb = (
f"[Company Introduction]:\n{prof['name']} operates in the "
f"{prof['finnhubIndustry']} sector ({prof['country']}). "
f"Founded {prof['ipo']}, market cap {prof['marketCapitalization']:.1f} "
f"{prof['currency']}; ticker {symbol} on {prof['exchange']}.\n"
)
# Past weeks block
past_block = ""
for _, row in df.iterrows():
term = "increased" if row["End Price"] > row["Start Price"] else "decreased"
head = (f"From {row['Start Date']:%Y-%m-%d} to {row['End Date']:%Y-%m-%d}, "
f"{symbol}'s stock price {term} from "
f"{row['Start Price']:.2f} to {row['End Price']:.2f}.")
news_items = json.loads(row["News"])
summaries = [
f"[Headline] {n['headline']}\n[Summary] {n['summary']}\n"
for n in news_items
if not n["summary"].startswith("Looking for stock market analysis")
]
past_block += "\n" + head + "\n" + "".join(sample_news(summaries, 5))
# Optional basic financials
if use_basics:
basics = current_basics(symbol, curday)
if basics:
basics_txt = "\n".join(f"{k}: {v}" for k, v in basics.items() if k != "period")
basics_block = (f"\n[Basic Financials] (reported {basics['period']}):\n{basics_txt}\n")
else:
basics_block = "\n[Basic Financials]: not available\n"
else:
basics_block = "\n[Basic Financials]: not requested\n"
horizon = f"{curday} to {n_weeks_before(curday, -1)}"
final_user_msg = (
company_blurb
+ past_block
+ basics_block
+ f"\nBased on all information before {curday}, analyse positive "
"developments and potential concerns for {symbol}, then predict its "
f"price movement for next week ({horizon})."
)
return final_user_msg
# ---------- 4 LLM CALL -------------------------------------------------------
def chat_completion(prompt: str,
model: str = OPENAI_MODEL,
temperature: float = 0.3,
stream: bool = False) -> str:
response = client.chat.completions.create(
model=model,
temperature=temperature,
stream=stream,
messages=[
{"role": "system", "content": SYSTEM_PROMPT},
{"role": "user", "content": prompt}
],
)
if stream:
collected = []
for chunk in response:
delta = chunk.choices[0].delta.content or ""
print(delta, end="", flush=True)
collected.append(delta)
print()
return "".join(collected)
# without stream
return response.choices[0].message.content
# ---------- 5 MAIN ENTRY (CLI test) -----------------------------------------
def predict(symbol: str = "AAPL",
curday: str = today(),
n_weeks: int = 3,
use_basics: bool = False,
stream: bool = False) -> tuple[str, str]:
steps = [n_weeks_before(curday, n) for n in range(n_weeks + 1)][::-1]
df = get_stock_data(symbol, steps)
df = attach_news(symbol, df)
prompt_info = make_prompt(symbol, df, curday, use_basics)
answer = chat_completion(prompt_info, stream=stream)
return prompt_info, answer
# ---------- 6 SETUP HF -----------------------------------------
def hf_predict(symbol, n_weeks, use_basics):
# 1. get curday
curday = date.today().strftime("%Y-%m-%d")
# 2. call predict
prompt, answer = predict(
symbol=symbol.upper(),
curday=curday,
n_weeks=int(n_weeks),
use_basics=bool(use_basics),
stream=False
)
return prompt, answer
with gr.Blocks() as demo:
gr.Markdown("FinRobot_Forecaster")
with gr.Row():
symbol = gr.Textbox(label="Ticker(eg. AAPL)", value="AAPL")
n_weeks = gr.Slider(1, 6, value=3, step=1, label="Trace Back Weeks")
use_basics = gr.Checkbox(label="Add Basic Financials", value=False)
output_prompt = gr.Textbox(label="Model Prompt", lines=8)
output_answer = gr.Textbox(label="Model Output", lines=12)
btn = gr.Button("Run Forecaster")
btn.click(fn=hf_predict,
inputs=[symbol, n_weeks, use_basics],
outputs=[output_prompt, output_answer])
if __name__ == "__main__":
demo.launch()