hunterschep's picture
Update app.py
4b8259d verified
raw
history blame
5.77 kB
import gradio as gr
import torch
import librosa
from transformers import Wav2Vec2Processor, AutoModelForCTC
import zipfile
import os
import firebase_admin
from firebase_admin import credentials, firestore, storage
from datetime import datetime, timedelta
import json
tmpdir = None
def transcribe(audio_file):
try:
audio, rate = librosa.load(audio_file, sr=16000)
input_values = processor(audio, sampling_rate=16000, return_tensors="pt").input_values
with torch.no_grad():
logits = model(input_values).logits
predicted_ids = torch.argmax(logits, dim=-1)
transcription = processor.batch_decode(predicted_ids)[0]
return transcription.replace("[UNK]", "")
except Exception as e:
return f"處理文件錯誤: {e}"
# Initialize Firebase
firebase_config = json.loads(os.environ.get('firebase_creds'))
cred = credentials.Certificate(firebase_config)
firebase_admin.initialize_app(cred, {
"storageBucket": "amis-asr-corrections-dem-8cf3d.firebasestorage.app"
})
db = firestore.client()
bucket = storage.bucket()
# Load ASR model and processor
MODEL_NAME = "eleferrand/XLSR_paiwan"
processor = Wav2Vec2Processor.from_pretrained(MODEL_NAME)
model = AutoModelForCTC.from_pretrained(MODEL_NAME)
def transcribe_both(audio_file):
transcription = transcribe(audio_file)
return transcription, transcription
def store_correction(original_transcription, corrected_transcription, audio_file, age, native_speaker):
try:
audio_metadata = {}
audio_file_url = None
if audio_file and os.path.exists(audio_file):
audio, sr = librosa.load(audio_file, sr=44100)
duration = librosa.get_duration(y=audio, sr=sr)
file_size = os.path.getsize(audio_file)
audio_metadata = {'duration': duration, 'file_size': file_size}
unique_id = str(uuid.uuid4())
destination_path = f"audio/pai/{unique_id}.wav"
blob = bucket.blob(destination_path)
blob.upload_from_filename(audio_file)
audio_file_url = blob.generate_signed_url(expiration=timedelta(hours=1))
combined_data = {
'transcription_info': {'original_text': original_transcription, 'corrected_text': corrected_transcription, 'language': 'pai'},
'audio_data': {'audio_metadata': audio_metadata, 'audio_file_url': audio_file_url},
'user_info': {'native_paiwan_speaker': native_speaker, 'age': age},
'timestamp': datetime.now().isoformat(), 'model_name': MODEL_NAME
}
db.collection('paiwan_transcriptions').add(combined_data)
return "校正保存成功!"
except Exception as e:
return f"保存失败: {e}"
def prepare_download(audio_file, original_transcription, corrected_transcription):
if audio_file is None:
return None
tmp_zip = tempfile.NamedTemporaryFile(delete=False, suffix=".zip")
tmp_zip.close()
with zipfile.ZipFile(tmp_zip.name, "w") as zf:
if os.path.exists(audio_file):
zf.write(audio_file, arcname="audio.wav")
orig_txt = "original_transcription.txt"
with open(orig_txt, "w", encoding="utf-8") as f:
f.write(original_transcription)
zf.write(orig_txt, arcname=orig_txt)
os.remove(orig_txt)
corr_txt = "corrected_transcription.txt"
with open(corr_txt, "w", encoding="utf-8") as f:
f.write(corrected_transcription)
zf.write(corr_txt, arcname=corr_txt)
os.remove(corr_txt)
return tmp_zip.name
# Interface
with gr.Blocks() as demo:
title = gr.Markdown("排灣語自動語音識別校正系統 (Paiwan ASR Transcription & Correction System)")
step1 = gr.Markdown(
"步驟 1:音訊上傳與產生逐字稿 (Audio Upload & Automatic Transcription)\n\n上傳後系統將自動產生逐字稿,請耐心等待。"
)
with gr.Row():
audio_input = gr.Audio(
sources=["upload", "microphone"], type="filepath", label="音訊輸入 (Audio Input)"
)
step2 = gr.Markdown("步驟 2:審閱與編輯逐字稿 (Step 2: Review & Edit Transcription)")
with gr.Row():
original_text = gr.Textbox(
label="原始逐字稿 (Original Transcription)", interactive=False, lines=5
)
corrected_text = gr.Textbox(
label="更正逐字稿 (Corrected Transcription)", interactive=True, lines=5
)
# Automatically generate transcription on audio upload
audio_input.change(
transcribe_both,
inputs=audio_input,
outputs=[original_text, corrected_text],
queue=True
)
step3 = gr.Markdown("步驟 3:使用者資訊 (Step 3: User Information)")
with gr.Row():
age_input = gr.Slider(
minimum=0, maximum=100, step=1, label="年齡 (Age)", value=25
)
native_speaker_input = gr.Checkbox(
label="母語排灣語使用者? (Native Paiwan Speaker?)", value=True
)
step4 = gr.Markdown("步驟 4:儲存與下載 (Step 4: Save & Download)")
with gr.Row():
save_button = gr.Button("儲存 (Save)")
save_status = gr.Textbox(
label="儲存狀態 (Save Status)", interactive=False
)
with gr.Row():
download_button = gr.Button("下載 ZIP 檔案 (Download ZIP File)")
download_output = gr.File()
save_button.click(
store_correction,
inputs=[original_text, corrected_text, audio_input, age_input, native_speaker_input],
outputs=save_status
)
download_button.click(
prepare_download,
inputs=[audio_input, original_text, corrected_text],
outputs=download_output
)
demo.launch()