| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						"""
 | 
					
					
						
						| 
							 | 
						Tiny AutoEncoder for Stable Diffusion
 | 
					
					
						
						| 
							 | 
						(DNN for encoding / decoding SD's latent space)
 | 
					
					
						
						| 
							 | 
						"""
 | 
					
					
						
						| 
							 | 
						import torch
 | 
					
					
						
						| 
							 | 
						import torch.nn as nn
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						import comfy.utils
 | 
					
					
						
						| 
							 | 
						import comfy.ops
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						def conv(n_in, n_out, **kwargs):
 | 
					
					
						
						| 
							 | 
						    return comfy.ops.disable_weight_init.Conv2d(n_in, n_out, 3, padding=1, **kwargs)
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class Clamp(nn.Module):
 | 
					
					
						
						| 
							 | 
						    def forward(self, x):
 | 
					
					
						
						| 
							 | 
						        return torch.tanh(x / 3) * 3
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class Block(nn.Module):
 | 
					
					
						
						| 
							 | 
						    def __init__(self, n_in, n_out):
 | 
					
					
						
						| 
							 | 
						        super().__init__()
 | 
					
					
						
						| 
							 | 
						        self.conv = nn.Sequential(conv(n_in, n_out), nn.ReLU(), conv(n_out, n_out), nn.ReLU(), conv(n_out, n_out))
 | 
					
					
						
						| 
							 | 
						        self.skip = comfy.ops.disable_weight_init.Conv2d(n_in, n_out, 1, bias=False) if n_in != n_out else nn.Identity()
 | 
					
					
						
						| 
							 | 
						        self.fuse = nn.ReLU()
 | 
					
					
						
						| 
							 | 
						    def forward(self, x):
 | 
					
					
						
						| 
							 | 
						        return self.fuse(self.conv(x) + self.skip(x))
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						def Encoder(latent_channels=4):
 | 
					
					
						
						| 
							 | 
						    return nn.Sequential(
 | 
					
					
						
						| 
							 | 
						        conv(3, 64), Block(64, 64),
 | 
					
					
						
						| 
							 | 
						        conv(64, 64, stride=2, bias=False), Block(64, 64), Block(64, 64), Block(64, 64),
 | 
					
					
						
						| 
							 | 
						        conv(64, 64, stride=2, bias=False), Block(64, 64), Block(64, 64), Block(64, 64),
 | 
					
					
						
						| 
							 | 
						        conv(64, 64, stride=2, bias=False), Block(64, 64), Block(64, 64), Block(64, 64),
 | 
					
					
						
						| 
							 | 
						        conv(64, latent_channels),
 | 
					
					
						
						| 
							 | 
						    )
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						def Decoder(latent_channels=4):
 | 
					
					
						
						| 
							 | 
						    return nn.Sequential(
 | 
					
					
						
						| 
							 | 
						        Clamp(), conv(latent_channels, 64), nn.ReLU(),
 | 
					
					
						
						| 
							 | 
						        Block(64, 64), Block(64, 64), Block(64, 64), nn.Upsample(scale_factor=2), conv(64, 64, bias=False),
 | 
					
					
						
						| 
							 | 
						        Block(64, 64), Block(64, 64), Block(64, 64), nn.Upsample(scale_factor=2), conv(64, 64, bias=False),
 | 
					
					
						
						| 
							 | 
						        Block(64, 64), Block(64, 64), Block(64, 64), nn.Upsample(scale_factor=2), conv(64, 64, bias=False),
 | 
					
					
						
						| 
							 | 
						        Block(64, 64), conv(64, 3),
 | 
					
					
						
						| 
							 | 
						    )
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class TAESD(nn.Module):
 | 
					
					
						
						| 
							 | 
						    latent_magnitude = 3
 | 
					
					
						
						| 
							 | 
						    latent_shift = 0.5
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def __init__(self, encoder_path=None, decoder_path=None, latent_channels=4):
 | 
					
					
						
						| 
							 | 
						        """Initialize pretrained TAESD on the given device from the given checkpoints."""
 | 
					
					
						
						| 
							 | 
						        super().__init__()
 | 
					
					
						
						| 
							 | 
						        self.taesd_encoder = Encoder(latent_channels=latent_channels)
 | 
					
					
						
						| 
							 | 
						        self.taesd_decoder = Decoder(latent_channels=latent_channels)
 | 
					
					
						
						| 
							 | 
						        self.vae_scale = torch.nn.Parameter(torch.tensor(1.0))
 | 
					
					
						
						| 
							 | 
						        self.vae_shift = torch.nn.Parameter(torch.tensor(0.0))
 | 
					
					
						
						| 
							 | 
						        if encoder_path is not None:
 | 
					
					
						
						| 
							 | 
						            self.taesd_encoder.load_state_dict(comfy.utils.load_torch_file(encoder_path, safe_load=True))
 | 
					
					
						
						| 
							 | 
						        if decoder_path is not None:
 | 
					
					
						
						| 
							 | 
						            self.taesd_decoder.load_state_dict(comfy.utils.load_torch_file(decoder_path, safe_load=True))
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    @staticmethod
 | 
					
					
						
						| 
							 | 
						    def scale_latents(x):
 | 
					
					
						
						| 
							 | 
						        """raw latents -> [0, 1]"""
 | 
					
					
						
						| 
							 | 
						        return x.div(2 * TAESD.latent_magnitude).add(TAESD.latent_shift).clamp(0, 1)
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    @staticmethod
 | 
					
					
						
						| 
							 | 
						    def unscale_latents(x):
 | 
					
					
						
						| 
							 | 
						        """[0, 1] -> raw latents"""
 | 
					
					
						
						| 
							 | 
						        return x.sub(TAESD.latent_shift).mul(2 * TAESD.latent_magnitude)
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def decode(self, x):
 | 
					
					
						
						| 
							 | 
						        x_sample = self.taesd_decoder((x - self.vae_shift) * self.vae_scale)
 | 
					
					
						
						| 
							 | 
						        x_sample = x_sample.sub(0.5).mul(2)
 | 
					
					
						
						| 
							 | 
						        return x_sample
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def encode(self, x):
 | 
					
					
						
						| 
							 | 
						        return (self.taesd_encoder(x * 0.5 + 0.5) / self.vae_scale) + self.vae_shift
 | 
					
					
						
						| 
							 | 
						
 |