Spaces:
Sleeping
Sleeping
"""LangGraph Agent""" | |
import os | |
from dotenv import load_dotenv | |
from langgraph.graph import START, StateGraph, MessagesState | |
from langgraph.prebuilt import tools_condition | |
from langgraph.prebuilt import ToolNode | |
from langchain_google_genai import ChatGoogleGenerativeAI | |
from langchain_groq import ChatGroq | |
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings | |
from langchain_community.tools.tavily_search import TavilySearchResults | |
from langchain_community.document_loaders import WikipediaLoader | |
from langchain_community.document_loaders import ArxivLoader | |
from langchain_core.messages import SystemMessage, HumanMessage | |
from langchain_core.tools import tool | |
from langchain.tools.retriever import create_retriever_tool | |
from langchain_community.vectorstores import Chroma # Ny import för Chroma | |
from langchain_core.documents import Document # Ny import för att skapa dokument | |
import shutil # För att hantera kataloger | |
load_dotenv() | |
def multiply(a: int, b: int) -> int: | |
"""Multiply two numbers. | |
Args: | |
a: first int | |
b: second int | |
""" | |
return a * b | |
def add(a: int, b: int) -> int: | |
"""Add two numbers. | |
Args: | |
a: first int | |
b: second int | |
""" | |
return a + b | |
def subtract(a: int, b: int) -> int: | |
"""Subtract two numbers. | |
Args: | |
a: first int | |
b: second int | |
""" | |
return a - b | |
def divide(a: int, b: int) -> int: | |
"""Divide two numbers. | |
Args: | |
a: first int | |
b: second int | |
""" | |
if b == 0: | |
raise ValueError("Cannot divide by zero.") | |
return a / b | |
def modulus(a: int, b: int) -> int: | |
"""Get the modulus of two numbers. | |
Args: | |
a: first int | |
b: second int | |
""" | |
return a % b | |
def wiki_search(query: str) -> str: | |
"""Search Wikipedia for a query and return maximum 2 results. | |
Args: | |
query: The search query.""" | |
search_docs = WikipediaLoader(query=query, load_max_docs=2).load() | |
formatted_search_docs = "\n\n---\n\n".join( | |
[ | |
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>' | |
for doc in search_docs | |
]) | |
return {"wiki_results": formatted_search_docs} | |
def web_search(query: str) -> str: | |
"""Search Tavily for a query and return maximum 3 results. | |
Args: | |
query: The search query.""" | |
search_docs = TavilySearchResults(max_results=3).invoke(query=query) | |
formatted_search_docs = "\n\n---\n\n".join( | |
[ | |
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>' | |
for doc in search_docs | |
]) | |
return {"web_results": formatted_search_docs} | |
def arvix_search(query: str) -> str: | |
"""Search Arxiv for a query and return maximum 3 result. | |
Args: | |
query: The search query.""" | |
search_docs = ArxivLoader(query=query, load_max_docs=3).load() | |
formatted_search_docs = "\n\n---\n\n".join( | |
[ | |
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>' | |
for doc in search_docs | |
]) | |
return {"arvix_results": formatted_search_docs} | |
# load the system prompt from the file | |
with open("system_prompt.txt", "r", encoding="utf-8") as f: | |
system_prompt = f.read() | |
# System message | |
sys_msg = SystemMessage(content=system_prompt) | |
# --- Start ChromaDB Setup --- | |
# Define the directory for ChromaDB persistence | |
CHROMA_DB_DIR = "./chroma_db" | |
# Build embeddings (this remains the same) | |
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") # dim=768 | |
# Initialize ChromaDB | |
# If the directory exists, load the existing vector store. | |
# Otherwise, create a new one and add some dummy documents. | |
if os.path.exists(CHROMA_DB_DIR) and os.listdir(CHROMA_DB_DIR): | |
print(f"Loading existing ChromaDB from {CHROMA_DB_DIR}") | |
vector_store = Chroma( | |
persist_directory=CHROMA_DB_DIR, | |
embedding_function=embeddings | |
) | |
else: | |
print(f"Creating new ChromaDB at {CHROMA_DB_DIR} and adding dummy documents.") | |
# Ensure the directory is clean before creating new | |
if os.path.exists(CHROMA_DB_DIR): | |
shutil.rmtree(CHROMA_DB_DIR) | |
os.makedirs(CHROMA_DB_DIR) | |
# Example dummy documents to populate the vector store | |
# In a real application, you would load your actual documents here | |
documents = [ | |
Document(page_content="What is the capital of France?", metadata={"source": "internal", "answer": "Paris"}), | |
Document(page_content="Who wrote Hamlet?", metadata={"source": "internal", "answer": "William Shakespeare"}), | |
Document(page_content="What is the highest mountain in the world?", metadata={"source": "internal", "answer": "Mount Everest"}), | |
Document(page_content="When was the internet invented?", metadata={"source": "internal", "answer": "The internet, as we know it, evolved from ARPANET in the late 1960s and early 1970s. The TCP/IP protocol, which forms the basis of the internet, was standardized in 1978."}), | |
Document(page_content="What is the square root of 64?", metadata={"source": "internal", "answer": "8"}), | |
Document(page_content="Who is the current president of the United States?", metadata={"source": "internal", "answer": "Joe Biden"}), | |
Document(page_content="What is the chemical symbol for water?", metadata={"source": "internal", "answer": "H2O"}), | |
Document(page_content="What is the largest ocean on Earth?", metadata={"source": "internal", "answer": "Pacific Ocean"}), | |
Document(page_content="What is the speed of light?", metadata={"source": "internal", "answer": "Approximately 299,792,458 meters per second in a vacuum."}), | |
Document(page_content="What is the capital of Sweden?", metadata={"source": "internal", "answer": "Stockholm"}), | |
] | |
vector_store = Chroma.from_documents( | |
documents=documents, | |
embedding=embeddings, | |
persist_directory=CHROMA_DB_DIR | |
) | |
vector_store.persist() # Save the new vector store to disk | |
print("ChromaDB initialized and persisted with dummy documents.") | |
# Create retriever tool using the Chroma vector store | |
retriever_tool = create_retriever_tool( # Changed variable name to avoid conflict with function name | |
retriever=vector_store.as_retriever(), | |
name="Question_Search", # Changed name to be more descriptive and valid for tool use | |
description="A tool to retrieve similar questions from a vector store and their answers.", | |
) | |
# Add the new retriever tool to your list of tools | |
tools = [ | |
multiply, | |
add, | |
subtract, | |
divide, | |
modulus, | |
wiki_search, | |
web_search, | |
arvix_search, | |
retriever_tool, # Add the new retriever tool here | |
] | |
# Build graph function | |
def build_graph(provider: str = "google"): | |
"""Build the graph""" | |
# Load environment variables from .env file | |
if provider == "google": | |
# Google Gemini | |
llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0) | |
elif provider == "groq": | |
# Groq https://console.groq.com/docs/models | |
llm = ChatGroq(model="qwen-qwq-32b", temperature=0) # optional : qwen-qwq-32b gemma2-9b-it | |
elif provider == "huggingface": | |
# TODO: Add huggingface endpoint | |
llm = ChatHuggingFace( | |
llm=HuggingFaceEndpoint( | |
url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf", | |
temperature=0, | |
), | |
) | |
else: | |
raise ValueError("Invalid provider. Choose 'google', 'groq' or 'huggingface'.") | |
# Bind tools to LLM | |
llm_with_tools = llm.bind_tools(tools) | |
# Node | |
def assistant(state: MessagesState): | |
"""Assistant node""" | |
return {"messages": [llm_with_tools.invoke(state["messages"])]} | |
from langchain_core.messages import AIMessage | |
def retriever(state: MessagesState): | |
query = state["messages"][-1].content | |
# Use the retriever tool to get similar documents | |
similar_docs = retriever_tool.invoke(query) # Call the tool directly | |
# The tool returns a list of Documents, so we need to process it | |
# Assuming the tool returns a list of documents, we take the first one | |
if similar_docs: | |
# The tool output is a string representation of the documents. | |
# We need to parse it or adjust the tool to return structured data. | |
# For simplicity, let's assume the tool returns a list of Document objects | |
# or a string that can be directly used. | |
# Given the original `retriever` node, it expected `similar_question[0].page_content`. | |
# If `retriever_tool.invoke(query)` returns a list of Document objects, | |
# then `similar_docs[0].page_content` is correct. | |
# If it returns a string, we need to adapt. | |
# For now, let's assume it returns a list of Documents or a string that contains the answer. | |
# If retriever_tool returns a string directly (as per your tool definition): | |
# content = similar_docs # This would be the string output from the tool | |
# If retriever_tool returns a list of Document objects from its internal retriever: | |
# Let's assume the `retriever_tool` internally uses `vector_store.as_retriever().invoke(query)` | |
# which returns a list of `Document` objects. | |
# The `create_retriever_tool` wraps this, so `retriever_tool.invoke` will return a string | |
# that is the `page_content` of the retrieved documents. | |
# The original `retriever` node was using `vector_store.similarity_search` directly. | |
# Now `retriever_tool` is a LangChain tool. | |
# When `retriever_tool.invoke(query)` is called, it will return the formatted string | |
# from the `create_retriever_tool` definition. | |
# So, `similar_docs` will be a string. | |
# We need to parse the `similar_docs` string to extract the answer. | |
# The `Question_Search` tool description is "A tool to retrieve similar questions from a vector store and their answers." | |
# The `create_retriever_tool` automatically formats the output of the retriever. | |
# Let's assume the output string from `retriever_tool.invoke(query)` will look something like: | |
# "content='What is the capital of Sweden?' metadata={'source': 'internal', 'answer': 'Stockholm'}" | |
# We need to extract the 'answer' part. | |
# A more robust way would be to make the retriever node *call* the tool, | |
# and then the LLM decides if it wants to use the tool. | |
# However, your current graph structure has a dedicated "retriever" node | |
# that directly fetches and returns an AIMessage. | |
# Let's refine the retriever node to parse the output of the tool more robustly. | |
# The `create_retriever_tool` returns a string where documents are joined. | |
# We need to extract the content that would be the "answer". | |
# The dummy documents have `metadata={"source": "internal", "answer": "..."}`. | |
# The `create_retriever_tool` will return `doc.page_content` by default. | |
# So, `similar_docs` will contain the question itself. | |
# We need to ensure the retriever provides the *answer* not just the question. | |
# Let's adjust the `retriever` node to directly access the `vector_store` | |
# for `similarity_search` and then extract the answer from metadata, | |
# similar to your original implementation. This bypasses the tool wrapper | |
# for this specific node, ensuring we get the full Document object. | |
similar_doc = vector_store.similarity_search(query, k=1)[0] | |
# Check if an 'answer' is directly available in metadata | |
if "answer" in similar_doc.metadata: | |
answer = similar_doc.metadata["answer"] | |
elif "Final answer :" in similar_doc.page_content: | |
answer = similar_doc.page_content.split("Final answer :")[-1].strip() | |
else: | |
answer = similar_doc.page_content.strip() # Fallback to page_content if no explicit answer | |
return {"messages": [AIMessage(content=answer)]} | |
else: | |
# If no similar documents found, return an empty AIMessage or a message indicating no answer | |
return {"messages": [AIMessage(content="No similar questions found in the knowledge base.")]} | |
builder = StateGraph(MessagesState) | |
builder.add_node("retriever", retriever) | |
# Retriever ist Start und Endpunkt | |
builder.set_entry_point("retriever") | |
builder.set_finish_point("retriever") | |
# Compile graph | |
return builder.compile() | |