Freddolin's picture
Update agent.py
bf58062 verified
raw
history blame
7.86 kB
import os
import json
import re
from typing import Tuple, Dict, Any
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM # Import AutoTokenizer and AutoModelForSeq2SeqLM
from tools.asr_tool import transcribe_audio
from tools.excel_tool import analyze_excel
from tools.search_tool import search_duckduckgo
from tools.math_tool import calculate_math # Make sure to import your math tool
class GaiaAgent:
def __init__(self):
token = os.getenv("HUGGINGFACEHUB_API_TOKEN")
if not token:
raise ValueError("Missing HUGGINGFACEHUB_API_TOKEN environment variable.")
# Specify the model and load tokenizer and model separately for better control
model_name = "google/flan-t5-large"
self.tokenizer = AutoTokenizer.from_pretrained(model_name, token=token)
self.model = AutoModelForSeq2SeqLM.from_pretrained(model_name, token=token)
# Use the pipeline with the loaded model and tokenizer
self.llm = pipeline(
"text2text-generation",
model=self.model,
tokenizer=self.tokenizer,
device="cpu", # Consider "cuda" if you have a GPU
max_new_tokens=256,
do_sample=False, # Set to True if you want to use temperature and top_p/k
# temperature=0.1, # Removed, as it's not a valid pipeline initialization flag here
)
self.system_prompt = """You are a general AI assistant. I will ask you a question. Report your thoughts, and finish your answer with the following template: FINAL ANSWER: [YOUR FINAL ANSWER]. YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string."""
def extract_final_answer(self, text: str) -> str:
"""Extrahera det slutliga svaret från modellens output"""
final_answer_match = re.search(r'FINAL ANSWER:\s*(.+?)(?:\n|$)', text, re.IGNORECASE)
if final_answer_match:
return final_answer_match.group(1).strip()
sentences = text.strip().split('\n')
return sentences[-1].strip() if sentences else text.strip()
def needs_tool(self, question: str) -> Tuple[str, bool]:
"""Bestäm vilket verktyg som behövs baserat på frågan"""
question_lower = question.lower()
if any(ext in question_lower for ext in ['.mp3', '.wav', '.m4a', '.flac']):
return 'audio', True
if any(ext in question_lower for ext in ['.xlsx', '.xls', '.csv']):
return 'excel', True
if any(keyword in question_lower for keyword in ['search', 'find', 'lookup', 'http', 'www.', 'wikipedia', 'albums', 'discography', 'published', 'website']):
return 'search', True
if any(keyword in question_lower for keyword in ['calculate', 'compute', 'sum', 'average', 'count', 'what is', 'solve']):
return 'math', True
return 'llm', False
def process_with_tools(self, question: str, tool_type: str) -> Tuple[str, str]:
"""Bearbeta frågan med specifika verktyg"""
trace_log = f"Detected {tool_type} task. Processing...\n"
try:
if tool_type == 'audio':
audio_files = re.findall(r'\b[\w\-_]+\.(mp3|wav|m4a|flac)\b', question, re.IGNORECASE)
if audio_files:
result = transcribe_audio(audio_files[0])
trace_log += f"Audio transcription: {result}\n"
return result, trace_log
else:
return "No audio file mentioned in the question.", trace_log
elif tool_type == 'excel':
excel_files = re.findall(r'\b[\w\-_]+\.(xlsx|xls|csv)\b', question, re.IGNORECASE)
if excel_files:
result = analyze_excel(excel_files[0])
trace_log += f"Excel analysis: {result}\n"
return result, trace_log
else:
return "No Excel file mentioned in the question.", trace_log
elif tool_type == 'search':
search_query = question # This might need refinement to extract just the search query
result = search_duckduckgo(search_query)
trace_log += f"Search results: {result}\n"
return result, trace_log
elif tool_type == 'math':
math_expression_match = re.search(r'calculate (.+)', question, re.IGNORECASE)
if math_expression_match:
expression = math_expression_match.group(1).strip()
result = calculate_math(expression)
trace_log += f"Math calculation: {result}\n"
return result, trace_log
else:
return "No clear mathematical expression found in the question.", trace_log
except Exception as e:
trace_log += f"Error using {tool_type} tool: {str(e)}\n"
return f"Error: {str(e)}", trace_log
return "No valid input found for tool", trace_log
def reason_with_llm(self, question: str, context: str = "") -> Tuple[str, str]:
"""Använd LLM för reasoning med kontext"""
trace_log = "Using LLM for reasoning...\n"
# Combine system prompt, context, and question, ensuring it fits token limit
if context:
prompt = f"{self.system_prompt}\n\nContext: {context}\n\nQuestion: {question}\n\nPlease analyze this step by step and provide your final answer."
else:
prompt = f"{self.system_prompt}\n\nQuestion: {question}\n\nPlease analyze this step by step and provide your final answer."
# Tokenize and truncate if necessary
inputs = self.tokenizer(prompt, return_tensors="pt", truncation=True, max_length=self.tokenizer.model_max_length)
try:
# Generate response using the model's generate method for more control
# You can add generation arguments here, e.g., temperature, top_k, etc.
outputs = self.model.generate(
inputs.input_ids,
max_new_tokens=256,
do_sample=False, # Set to True to enable temperature and other sampling parameters
# temperature=0.1, # Example: Only if do_sample is True
)
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
trace_log += f"LLM response: {response}\n"
return response, trace_log
except Exception as e:
trace_log += f"Error with LLM: {str(e)}\n"
return f"Error: {str(e)}", trace_log
def __call__(self, question: str) -> Tuple[str, str]:
"""Huvudfunktion som bearbetar frågan"""
total_trace = f"Processing question: {question}\n"
tool_type, needs_tool = self.needs_tool(question)
total_trace += f"Tool needed: {tool_type}\n"
context = ""
if needs_tool and tool_type != 'llm':
tool_result, tool_trace = self.process_with_tools(question, tool_type)
total_trace += tool_trace
context = tool_result
llm_response, llm_trace = self.reason_with_llm(question, context)
total_trace += llm_trace
final_answer = self.extract_final_answer(llm_response)
total_trace += f"Final answer extracted: {final_answer}\n"
return final_answer, total_trace