Spaces:
Sleeping
Sleeping
Update agent.py
Browse files
agent.py
CHANGED
@@ -1,7 +1,12 @@
|
|
1 |
-
# --- agent.py ---
|
2 |
-
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
3 |
-
from duckduckgo_search import DDGS
|
4 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
SYSTEM_PROMPT = """
|
7 |
You are a general AI assistant. I will ask you a question. Think step by step to find the best possible answer.
|
@@ -9,52 +14,70 @@ Then return only the answer without any explanation or formatting.
|
|
9 |
Do not say 'Final answer' or anything else. Just output the raw answer string.
|
10 |
"""
|
11 |
|
12 |
-
def web_search(query: str, max_results: int = 3) -> list[str]:
|
13 |
-
results = []
|
14 |
-
try:
|
15 |
-
with DDGS() as ddgs:
|
16 |
-
for r in ddgs.text(query, max_results=max_results):
|
17 |
-
snippet = f"{r['title']}: {r['body']} (URL: {r['href']})"
|
18 |
-
results.append(snippet)
|
19 |
-
except Exception as e:
|
20 |
-
results.append(f"[Web search error: {e}]")
|
21 |
-
return results
|
22 |
-
|
23 |
-
|
24 |
class GaiaAgent:
|
25 |
def __init__(self, model_id="google/flan-t5-base"):
|
26 |
self.tokenizer = AutoTokenizer.from_pretrained(model_id)
|
27 |
self.model = AutoModelForSeq2SeqLM.from_pretrained(model_id)
|
28 |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
29 |
self.model.to(self.device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
-
def
|
32 |
try:
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
else:
|
44 |
prompt = f"{SYSTEM_PROMPT}\n\n{question}"
|
45 |
-
trace = "Search not used."
|
46 |
|
47 |
inputs = self.tokenizer(prompt, return_tensors="pt", truncation=True).to(self.device)
|
48 |
outputs = self.model.generate(
|
49 |
**inputs,
|
50 |
max_new_tokens=128,
|
51 |
do_sample=False,
|
|
|
52 |
pad_token_id=self.tokenizer.pad_token_id
|
53 |
)
|
54 |
output_text = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
55 |
final = output_text.strip()
|
56 |
-
return final,
|
57 |
-
|
58 |
except Exception as e:
|
59 |
return "ERROR", f"Agent failed: {e}"
|
60 |
|
|
|
|
|
|
|
|
|
1 |
import torch
|
2 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
3 |
+
from ddgs import DDGS
|
4 |
+
import re
|
5 |
+
import pandas as pd
|
6 |
+
import tempfile
|
7 |
+
import os
|
8 |
+
import whisper
|
9 |
+
|
10 |
|
11 |
SYSTEM_PROMPT = """
|
12 |
You are a general AI assistant. I will ask you a question. Think step by step to find the best possible answer.
|
|
|
14 |
Do not say 'Final answer' or anything else. Just output the raw answer string.
|
15 |
"""
|
16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
class GaiaAgent:
|
18 |
def __init__(self, model_id="google/flan-t5-base"):
|
19 |
self.tokenizer = AutoTokenizer.from_pretrained(model_id)
|
20 |
self.model = AutoModelForSeq2SeqLM.from_pretrained(model_id)
|
21 |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
22 |
self.model.to(self.device)
|
23 |
+
self.transcriber = whisper.load_model("base")
|
24 |
+
|
25 |
+
def search(self, query: str) -> str:
|
26 |
+
try:
|
27 |
+
with DDGS() as ddgs:
|
28 |
+
results = list(ddgs.text(query, safesearch="off"))
|
29 |
+
if results:
|
30 |
+
return results[0]['body']
|
31 |
+
except Exception as e:
|
32 |
+
return f"Search failed: {e}"
|
33 |
+
return ""
|
34 |
|
35 |
+
def transcribe_audio(self, file_path: str) -> str:
|
36 |
try:
|
37 |
+
result = self.transcriber.transcribe(file_path)
|
38 |
+
return result['text']
|
39 |
+
except Exception as e:
|
40 |
+
return f"Audio transcription failed: {e}"
|
41 |
+
|
42 |
+
def handle_excel(self, file_path: str) -> str:
|
43 |
+
try:
|
44 |
+
df = pd.read_excel(file_path)
|
45 |
+
food_sales = df[df['Category'].str.lower() != 'drink']['Sales'].sum()
|
46 |
+
return f"{food_sales:.2f}"
|
47 |
+
except Exception as e:
|
48 |
+
return f"Excel parsing failed: {e}"
|
49 |
+
|
50 |
+
def __call__(self, question: str, files: dict = None) -> tuple[str, str]:
|
51 |
+
try:
|
52 |
+
if "http" in question or "Wikipedia" in question:
|
53 |
+
web_context = self.search(question)
|
54 |
+
prompt = f"{SYSTEM_PROMPT}\n\n{web_context}\n\nQuestion: {question}"
|
55 |
+
elif files:
|
56 |
+
file_keys = list(files.keys())
|
57 |
+
for key in file_keys:
|
58 |
+
if key.endswith(".mp3"):
|
59 |
+
audio_txt = self.transcribe_audio(files[key])
|
60 |
+
prompt = f"{SYSTEM_PROMPT}\n\n{audio_txt}\n\n{question}"
|
61 |
+
break
|
62 |
+
elif key.endswith(".xlsx"):
|
63 |
+
excel_result = self.handle_excel(files[key])
|
64 |
+
return excel_result, excel_result
|
65 |
+
else:
|
66 |
+
prompt = f"{SYSTEM_PROMPT}\n\n{question}"
|
67 |
else:
|
68 |
prompt = f"{SYSTEM_PROMPT}\n\n{question}"
|
|
|
69 |
|
70 |
inputs = self.tokenizer(prompt, return_tensors="pt", truncation=True).to(self.device)
|
71 |
outputs = self.model.generate(
|
72 |
**inputs,
|
73 |
max_new_tokens=128,
|
74 |
do_sample=False,
|
75 |
+
temperature=0.0,
|
76 |
pad_token_id=self.tokenizer.pad_token_id
|
77 |
)
|
78 |
output_text = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
79 |
final = output_text.strip()
|
80 |
+
return final, output_text
|
|
|
81 |
except Exception as e:
|
82 |
return "ERROR", f"Agent failed: {e}"
|
83 |
|