Spaces:
Sleeping
Sleeping
Update agent.py
Browse files
agent.py
CHANGED
@@ -59,22 +59,25 @@ class GaiaAgent:
|
|
59 |
Your task is to carefully and accurately answer questions by using the search tool when necessary.
|
60 |
Always provide a complete and correct answer based on the information you find.
|
61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
Your available tools:
|
63 |
1. search_tavily(query: str): Searches on Tavily and returns relevant results.
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
</TOOL_CODE>
|
75 |
-
|
76 |
-
When you have found all the necessary information and are ready to answer the task, provide your final answer.
|
77 |
-
|
78 |
Task: {task_description}
|
79 |
"""
|
80 |
|
@@ -82,25 +85,31 @@ class GaiaAgent:
|
|
82 |
current_response = ""
|
83 |
|
84 |
for i in range(max_iterations):
|
85 |
-
|
|
|
86 |
|
87 |
print(f"[{i+1}/{max_iterations}] Generating response with prompt length: {len(full_prompt)}")
|
88 |
|
89 |
generated_text = self.text_generator(
|
90 |
full_prompt,
|
91 |
-
max_new_tokens=1024, #
|
92 |
num_return_sequences=1,
|
93 |
pad_token_id=self.tokenizer.eos_token_id,
|
94 |
do_sample=True,
|
95 |
top_k=50, top_p=0.95,
|
96 |
-
temperature=0.
|
97 |
)[0]['generated_text']
|
98 |
|
99 |
new_content = generated_text[len(full_prompt):].strip()
|
100 |
print(f"DEBUG - Full generated_text: \n---START---\n{generated_text}\n---END---")
|
101 |
print(f"DEBUG - Extracted new_content: '{new_content}'")
|
102 |
|
103 |
-
|
|
|
|
|
|
|
|
|
|
|
104 |
start_index = new_content.find("<TOOL_CODE>") + len("<TOOL_CODE>")
|
105 |
end_index = new_content.find("</TOOL_CODE>")
|
106 |
tool_call_str = new_content[start_index:end_index].strip()
|
@@ -112,18 +121,18 @@ class GaiaAgent:
|
|
112 |
query = tool_call_str[len("search_tavily("):-1].strip().strip('"').strip("'")
|
113 |
tool_output = search_tavily(query)
|
114 |
print(f"Tool result: {tool_output[:200]}...")
|
115 |
-
current_response += f"\n\
|
116 |
else:
|
117 |
tool_output = f"Unknown tool: {tool_call_str}"
|
118 |
print(f"Error: {tool_output}")
|
119 |
-
current_response += f"\n\
|
120 |
except Exception as tool_e:
|
121 |
tool_output = f"Error running tool {tool_call_str}: {tool_e}"
|
122 |
print(f"Error: {tool_output}")
|
123 |
-
current_response += f"\n\
|
124 |
else:
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
|
129 |
-
return "Agent could not complete the task within the allowed iterations. Latest response: " + new_content.strip()
|
|
|
59 |
Your task is to carefully and accurately answer questions by using the search tool when necessary.
|
60 |
Always provide a complete and correct answer based on the information you find.
|
61 |
|
62 |
+
You must follow a Thought, Tool, Observation, Answer (TTOA) pattern.
|
63 |
+
|
64 |
+
**Thought:** First, carefully consider the task. What information do you need to answer the question? Do you need to use a tool?
|
65 |
+
**Tool:** If you need to search, use the search_tavily tool. The format is: <TOOL_CODE>search_tavily("your search query")</TOOL_CODE>
|
66 |
+
**Observation:** After a tool call, you will receive an observation (the tool's output).
|
67 |
+
**Answer:** Once you have gathered all necessary information, provide your final, concise answer directly.
|
68 |
+
|
69 |
Your available tools:
|
70 |
1. search_tavily(query: str): Searches on Tavily and returns relevant results.
|
71 |
+
|
72 |
+
Example Interaction:
|
73 |
+
Task: What is the capital of France?
|
74 |
+
Thought: I need to find the capital of France. I should use the search_tavily tool.
|
75 |
+
Tool: <TOOL_CODE>search_tavily("capital of France")</TOOL_CODE>
|
76 |
+
Observation: The capital of France is Paris.
|
77 |
+
Answer: The capital of France is Paris.
|
78 |
+
|
79 |
+
Now, let's start.
|
80 |
+
|
|
|
|
|
|
|
|
|
81 |
Task: {task_description}
|
82 |
"""
|
83 |
|
|
|
85 |
current_response = ""
|
86 |
|
87 |
for i in range(max_iterations):
|
88 |
+
# Lägg till "Thought:" här för att uppmuntra modellen att starta sin tankeprocess
|
89 |
+
full_prompt = prompt + current_response + "\n\nThought:"
|
90 |
|
91 |
print(f"[{i+1}/{max_iterations}] Generating response with prompt length: {len(full_prompt)}")
|
92 |
|
93 |
generated_text = self.text_generator(
|
94 |
full_prompt,
|
95 |
+
max_new_tokens=1024, # Fortsätt med 1024 eller öka till 2048
|
96 |
num_return_sequences=1,
|
97 |
pad_token_id=self.tokenizer.eos_token_id,
|
98 |
do_sample=True,
|
99 |
top_k=50, top_p=0.95,
|
100 |
+
temperature=0.7 # Justera temperaturen till 0.7
|
101 |
)[0]['generated_text']
|
102 |
|
103 |
new_content = generated_text[len(full_prompt):].strip()
|
104 |
print(f"DEBUG - Full generated_text: \n---START---\n{generated_text}\n---END---")
|
105 |
print(f"DEBUG - Extracted new_content: '{new_content}'")
|
106 |
|
107 |
+
# Kontrollera om modellen genererade ett svar som en 'Answer:'
|
108 |
+
if "Answer:" in new_content:
|
109 |
+
final_answer = new_content.split("Answer:", 1)[1].strip()
|
110 |
+
print(f"Final answer from model:\n{final_answer}")
|
111 |
+
return final_answer
|
112 |
+
elif "<TOOL_CODE>" in new_content and "</TOOL_CODE>" in new_content:
|
113 |
start_index = new_content.find("<TOOL_CODE>") + len("<TOOL_CODE>")
|
114 |
end_index = new_content.find("</TOOL_CODE>")
|
115 |
tool_call_str = new_content[start_index:end_index].strip()
|
|
|
121 |
query = tool_call_str[len("search_tavily("):-1].strip().strip('"').strip("'")
|
122 |
tool_output = search_tavily(query)
|
123 |
print(f"Tool result: {tool_output[:200]}...")
|
124 |
+
current_response += f"\n\nObservation: {tool_output}\n"
|
125 |
else:
|
126 |
tool_output = f"Unknown tool: {tool_call_str}"
|
127 |
print(f"Error: {tool_output}")
|
128 |
+
current_response += f"\n\nObservation: {tool_output}\n"
|
129 |
except Exception as tool_e:
|
130 |
tool_output = f"Error running tool {tool_call_str}: {tool_e}"
|
131 |
print(f"Error: {tool_output}")
|
132 |
+
current_response += f"\n\nObservation: {tool_output}\n"
|
133 |
else:
|
134 |
+
# Om modellen varken ger svar eller verktygskall men genererar något annat
|
135 |
+
current_response += f"\n\n{new_content}\n"
|
136 |
+
print(f"Model generated non-tool/non-answer content. Appending: {new_content[:100]}...")
|
137 |
|
138 |
+
return "Agent could not complete the task within the allowed iterations. Latest response: " + new_content.strip() if new_content else "Agent could not complete the task within the allowed iterations. No meaningful content generated."
|