Spaces:
Sleeping
Sleeping
import gradio as gr | |
from huggingface_hub import InferenceClient | |
import soundfile as sf | |
import torch | |
from transformers import pipeline | |
# Set up your TTS model (as before) | |
synthesiser = pipeline("text-to-speech", "Futuresony/output") | |
# Set up your text generation client | |
client = InferenceClient("Futuresony/future_ai_12_10_2024.gguf") | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
# Generate text response from your model | |
messages = [{"role": "system", "content": system_message}] | |
for val in history: | |
if val[0]: | |
messages.append({"role": "user", "content": val[0]}) | |
if val[1]: | |
messages.append({"role": "assistant", "content": val[1]}) | |
messages.append({"role": "user", "content": message}) | |
response = "" | |
for message in client.chat_completion( | |
messages, | |
max_tokens=max_tokens, | |
stream=True, | |
temperature=temperature, | |
top_p=top_p, | |
): | |
token = message.choices[0].delta.content | |
response += token | |
yield response | |
# Convert the generated text into speech (Text-to-Speech) | |
# Get speaker embedding (optional, if you want to control the speaker) | |
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation") | |
speaker_embedding = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0) | |
# Generate speech from the text response | |
speech = synthesiser(response, forward_params={"speaker_embeddings": speaker_embedding}) | |
# Save the speech to a file (you can play it on the fly or return it in other formats like MP3) | |
sf.write("generated_speech.wav", speech["audio"], samplerate=speech["sampling_rate"]) | |
return response, "generated_speech.wav" | |
# You can return the text along with speech if needed | |
# Create the Gradio interface | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), | |
], | |
) | |
if __name__ == "__main__": | |
demo.launch() | |