File size: 1,836 Bytes
868518d
 
 
080637e
7c338f3
868518d
dbbaf71
 
 
 
868518d
 
7c338f3
 
 
 
 
 
 
 
 
 
 
 
4dd7f38
 
 
 
7c338f3
 
 
 
 
 
868518d
080637e
 
 
dbbaf71
 
 
 
080637e
 
dbbaf71
080637e
 
 
 
 
 
 
 
 
 
 
868518d
dbbaf71
080637e
 
 
dbbaf71
080637e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import gradio as gr
import numpy as np
import os
from sentence_transformers import SentenceTransformer
from transformers import RagTokenizer, RagRetriever, RagSequenceForGeneration

# 使用更轻量的模型 - 添加 token 参数
model_name = "all-MiniLM-L6-v2"
token = os.getenv("HF_TOKEN")  # 从环境变量获取令牌
model = SentenceTransformer(model_name, use_auth_token=token) if token else None

def predict(vector):
    # 加载本地索引
    retriever = RagRetriever.from_pretrained(
        "facebook/rag-sequence-nq",
        index_name="custom",
        index_paths=["rag_index.faiss"]
    )
    
    # 检索相关文档
    docs = retriever.retrieve(vector)
    
    # 生成答案
    tokenizer = RagTokenizer.from_pretrained("facebook/rag-sequence-nq")
    model = RagSequenceForGeneration.from_pretrained(
        "facebook/rag-sequence-nq",
        torch_dtype=torch.float16
    )
    inputs = tokenizer.prepare_seq2seq_batch(
        [vector], 
        return_tensors="pt"
    )
    outputs = model.generate(input_ids=inputs["input_ids"])
    return tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]

# 创建更简单的接口
with gr.Blocks() as demo:
    gr.Markdown("## 🛍️ 电商智能客服系统")
    
    # 添加模型状态显示
    model_status = gr.Markdown(f"模型状态: {'已加载' if model else '未加载'}")
    
    with gr.Row():
        vector_input = gr.Dataframe(
            headers=["vector"], 
            type="array",
            label="输入向量 (384维)"
        )
        output = gr.Textbox(label="智能回答")
    
    submit_btn = gr.Button("生成回答")
    submit_btn.click(
        fn=predict, 
        inputs=vector_input, 
        outputs=output
    )

# 启动应用
demo.launch(
    server_name="0.0.0.0",
    server_port=7860,
    share=False
)