GOGO_rag / app.py
GOGO198's picture
Create app.py
868518d verified
raw
history blame
1.66 kB
import gradio as gr
import numpy as np
from transformers import RagRetriever, RagTokenizer, RagSequenceForGeneration
import os
# 从环境变量加载模型
MODEL_NAME = os.getenv("MODEL_NAME", "facebook/rag-sequence-nq")
retriever = RagRetriever.from_pretrained(MODEL_NAME, index_name="custom")
tokenizer = RagTokenizer.from_pretrained(MODEL_NAME)
model = RagSequenceForGeneration.from_pretrained(MODEL_NAME, retriever=retriever)
def predict(vector):
"""处理向量输入并返回答案"""
try:
# 将向量转换为适合检索的格式
vector = np.array(vector).reshape(1, -1)
# 使用 RAG 进行检索和生成
input_dict = tokenizer.prepare_seq2seq_batch(
"",
return_tensors="pt"
)
input_dict["input_ids"] = None # 使用向量而非文本
input_dict["external_vector"] = vector # 传递自定义向量
# 生成答案
outputs = model.generate(
input_ids=input_dict["input_ids"],
external_vector=input_dict["external_vector"],
max_length=200
)
# 解码结果
answer = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
return answer
except Exception as e:
return f"处理错误: {str(e)}"
# 创建 Gradio 接口
iface = gr.Interface(
fn=predict,
inputs=gr.Dataframe(headers=["vector"], type="array"), # 接收向量输入
outputs="text",
title="电商智能客服",
description="输入商品/订单向量获取智能回答"
)
# 启动应用
iface.launch(server_name="0.0.0.0", server_port=7860)