Spaces:
Sleeping
Sleeping
# -*- coding: utf-8 -*- | |
"""app.ipynb | |
Automatically generated by Colab. | |
Original file is located at | |
https://colab.research.google.com/drive/1XblbxoRxB4XOHixjGij789FPD9KjKdhi | |
""" | |
import os | |
import pdfplumber | |
import gradio as gr | |
from langchain_groq.chat_models import ChatGroq | |
# Set Groq API key securely | |
GROQ_API_KEY = os.getenv("GROQ_API_KEY") # Fetch from environment variables | |
if not GROQ_API_KEY: | |
raise ValueError("GROQ_API_KEY is not set. Add it in Hugging Face Secrets.") | |
# Initialize LLM | |
llm = ChatGroq(model_name="llama-3.3-70b-versatile") | |
def extract_text_from_pdf(pdf_file): | |
"""Extracts clean text from a text-based PDF while handling edge cases.""" | |
text = "" | |
try: | |
with pdfplumber.open(pdf_file) as pdf: | |
for page in pdf.pages: | |
page_text = page.extract_text() | |
if page_text: | |
text += page_text.strip() + "\n\n" # Keep formatting clean | |
except Exception as e: | |
return f"Error extracting text: {str(e)}" | |
if not text.strip(): | |
return "β οΈ No readable text found. This might be a scanned or image-based PDF." | |
return text.strip() | |
def summarize_text(text, length, style): | |
"""Summarizes extracted text with structured formatting.""" | |
prompt = ( | |
f""" | |
Read the following document and summarize it in {style.lower()} format. | |
Keep the summary {length.lower()}. | |
Follow this structured reasoning: | |
1. Identify key sections & main topics. | |
2. Extract essential points from each section. | |
3. Remove redundant information. | |
4. Ensure accuracy without hallucination. | |
Document: | |
{text[:10000]} # Limit input to 10,000 characters for efficiency | |
""" | |
) | |
response = llm.predict(prompt) | |
return response.strip() | |
def process_pdf(file, length, style): | |
"""Extracts text and summarizes PDF with customization options.""" | |
if not file: | |
return "β οΈ No file uploaded. Please upload a PDF." | |
text = extract_text_from_pdf(file.name) | |
if text.startswith("β οΈ") or text.startswith("Error"): | |
return text # Return error messages directly | |
return summarize_text(text, length, style) | |
# Create Gradio Interface | |
interface = gr.Interface( | |
fn=process_pdf, | |
inputs=[ | |
gr.File(label="π Upload a PDF"), | |
gr.Radio(["Short", "Medium", "Long"], label="π Summary Length", value="Medium"), | |
gr.Radio(["Bullets", "Key Takeaways", "Concise Paragraph"], label="π Summary Style", value="Key Takeaways"), | |
], | |
outputs="text", | |
title="π Insurance Policy Document Summarizer", | |
description="Upload a policy and get summary.", | |
) | |
# Run the app | |
interface.launch() |