File size: 9,840 Bytes
cfb37bf
fb3185e
 
 
c662fe8
 
1ec4316
f094617
fb3185e
 
cfb37bf
c662fe8
 
 
fb3185e
 
 
 
 
 
 
f094617
fb3185e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f094617
fb3185e
 
 
 
 
 
 
f094617
fb3185e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f094617
fb3185e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f094617
fb3185e
 
 
 
 
 
 
f094617
fb3185e
 
 
 
 
 
 
 
 
6d382b7
91e2f1d
6d382b7
 
 
 
 
91e2f1d
 
6d382b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
91e2f1d
 
6d382b7
 
 
91e2f1d
 
 
fb3185e
d6e55c9
f31f6ca
 
d6e55c9
 
 
 
91e2f1d
d6e55c9
 
fb3185e
f31f6ca
d6e55c9
 
 
fb3185e
d6e55c9
91e2f1d
fb3185e
c662fe8
 
 
 
 
 
 
f31f6ca
 
 
 
 
 
c662fe8
d6e55c9
91e2f1d
 
 
 
c662fe8
fb3185e
91e2f1d
fb3185e
c662fe8
 
fb3185e
 
a987d91
c662fe8
 
fb3185e
 
c662fe8
6d382b7
c662fe8
f31f6ca
91e2f1d
c662fe8
91e2f1d
fb3185e
91e2f1d
fb3185e
91e2f1d
6d382b7
fb3185e
 
 
 
 
6d382b7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
import gradio as gr
import json
import tempfile
import os
from typing import List, Optional, Literal
from PIL import Image
import spaces
from pathlib import Path
from htrflow.volume.volume import Collection
from htrflow.pipeline.pipeline import Pipeline

DEFAULT_OUTPUT = "alto"
CHOICES = ["txt", "alto", "page", "json"]

PIPELINE_CONFIGS = {
    "letter_english": {
        "steps": [
            {
                "step": "Segmentation",
                "settings": {
                    "model": "yolo",
                    "model_settings": {"model": "Riksarkivet/yolov9-lines-within-regions-1"},
                    "generation_settings": {"batch_size": 8},
                },
            },
            {
                "step": "TextRecognition",
                "settings": {
                    "model": "TrOCR",
                    "model_settings": {"model": "microsoft/trocr-base-handwritten"},
                    "generation_settings": {"batch_size": 16},
                },
            },
            {"step": "OrderLines"},
        ]
    },
    "letter_swedish": {
        "steps": [
            {
                "step": "Segmentation",
                "settings": {
                    "model": "yolo",
                    "model_settings": {"model": "Riksarkivet/yolov9-lines-within-regions-1"},
                    "generation_settings": {"batch_size": 8},
                },
            },
            {
                "step": "TextRecognition",
                "settings": {
                    "model": "TrOCR",
                    "model_settings": {"model": "Riksarkivet/trocr-base-handwritten-hist-swe-2"},
                    "generation_settings": {"batch_size": 16},
                },
            },
            {"step": "OrderLines"},
        ]
    },
    "spread_english": {
        "steps": [
            {
                "step": "Segmentation",
                "settings": {
                    "model": "yolo",
                    "model_settings": {"model": "Riksarkivet/yolov9-regions-1"},
                    "generation_settings": {"batch_size": 4},
                },
            },
            {
                "step": "Segmentation",
                "settings": {
                    "model": "yolo",
                    "model_settings": {"model": "Riksarkivet/yolov9-lines-within-regions-1"},
                    "generation_settings": {"batch_size": 8},
                },
            },
            {
                "step": "TextRecognition",
                "settings": {
                    "model": "TrOCR",
                    "model_settings": {"model": "microsoft/trocr-base-handwritten"},
                    "generation_settings": {"batch_size": 16},
                },
            },
            {"step": "ReadingOrderMarginalia", "settings": {"two_page": True}},
        ]
    },
    "spread_swedish": {
        "steps": [
            {
                "step": "Segmentation",
                "settings": {
                    "model": "yolo",
                    "model_settings": {"model": "Riksarkivet/yolov9-regions-1"},
                    "generation_settings": {"batch_size": 4},
                },
            },
            {
                "step": "Segmentation",
                "settings": {
                    "model": "yolo",
                    "model_settings": {"model": "Riksarkivet/yolov9-lines-within-regions-1"},
                    "generation_settings": {"batch_size": 8},
                },
            },
            {
                "step": "TextRecognition",
                "settings": {
                    "model": "TrOCR",
                    "model_settings": {"model": "Riksarkivet/trocr-base-handwritten-hist-swe-2"},
                    "generation_settings": {"batch_size": 16},
                },
            },
            {"step": "ReadingOrderMarginalia", "settings": {"two_page": True}},
        ]
    },
}

@spaces.GPU
def htrflow_htr(image_path: str, document_type: Literal["letter_english", "letter_swedish", "spread_english", "spread_swedish"] = "letter_swedish", output_format: Literal["txt", "alto", "page", "json"] = DEFAULT_OUTPUT, custom_settings: Optional[str] = None) -> str:
    """
    Process handwritten text recognition (HTR) on uploaded images and return extracted text in the specified format.
    
    This function uses machine learning models to automatically detect, segment, and transcribe handwritten text 
    from historical documents. It supports different document types and languages, with specialized models 
    trained on historical handwriting from the Swedish National Archives (Riksarkivet).
    
    Args:
        image_path (str): The file path or URL to the image containing handwritten text to be processed.
                         Supports common image formats like JPG, PNG, TIFF.
        
        document_type (Literal): The type of document and language processing template to use.
                                Available options:
                                - "letter_english": Single-page English handwritten letters (default: "letter_swedish")
                                - "letter_swedish": Single-page Swedish handwritten letters 
                                - "spread_english": Two-page spread English documents with marginalia
                                - "spread_swedish": Two-page spread Swedish documents with marginalia
                                Default: "letter_swedish"
        
        output_format (Literal): The format for the output file containing the transcribed text.
                                Available options:
                                - "txt": Plain text format with line breaks
                                - "alto": ALTO XML format with detailed layout and coordinate information
                                - "page": PAGE XML format with structural markup and positioning data  
                                - "json": JSON format with structured text, layout information and metadata
                                Default: "alto"
                                Note: Both "alto" and "page" formats are XML-based with layout information.
        
        custom_settings (Optional[str]): Advanced users can provide custom pipeline configuration as a 
                                        JSON string to override the default processing steps. This allows 
                                        fine-tuning of model parameters, batch sizes, and processing workflow.
                                        Default: None (uses predefined configuration for document_type)
        
    Returns:
        str: The file path to the generated output file containing the transcribed text in the requested format,
             or an error message if processing fails. The output file will be named based on the original 
             image filename with the appropriate extension (.txt, .xml, or .json).
    """
    if not image_path:
        return "Error: No image provided"

    try:
        original_filename = Path(image_path).stem or "output"
        
        if custom_settings:
            try:
                config = json.loads(custom_settings)
            except json.JSONDecodeError:
                return "Error: Invalid JSON in custom_settings parameter"
        else:
            config = PIPELINE_CONFIGS[document_type]

        collection = Collection([image_path])
        pipeline = Pipeline.from_config(config)
        
        try:
            processed_collection = pipeline.run(collection)
        except Exception as pipeline_error:
            return f"Error: Pipeline execution failed: {str(pipeline_error)}"

        temp_dir = Path(tempfile.mkdtemp())
        export_dir = temp_dir / output_format
        processed_collection.save(directory=str(export_dir), serializer=output_format)
        
        output_file_path = None
        for root, _, files in os.walk(export_dir):
            for file in files:
                old_path = os.path.join(root, file)
                file_ext = Path(file).suffix
                new_filename = f"{original_filename}.{output_format}" if not file_ext else f"{original_filename}{file_ext}"
                new_path = os.path.join(root, new_filename)
                os.rename(old_path, new_path)
                output_file_path = new_path
                break
        
        if output_file_path and os.path.exists(output_file_path):
            return output_file_path
        else:
            return "Error: Failed to generate output file"
        
    except Exception as e:
        return f"Error: HTR processing failed: {str(e)}"

def extract_text_from_collection(collection: Collection) -> str:
    text_lines = []
    for page in collection.pages:
        for node in page.traverse():
            if hasattr(node, "text") and node.text:
                text_lines.append(node.text)
    return "\n".join(text_lines)

def create_htrflow_mcp_server():
    demo = gr.Interface(
        fn=htrflow_htr,
        inputs=[
            gr.Image(type="filepath", label="Upload Image or Enter URL"),
            gr.Dropdown(choices=["letter_english", "letter_swedish", "spread_english", "spread_swedish"], value="letter_swedish", label="Document Type"),
            gr.Dropdown(choices=CHOICES, value=DEFAULT_OUTPUT, label="Output Format"),
            gr.Textbox(label="Custom Settings (JSON)", placeholder="Optional custom pipeline settings", value=""),
        ],
        outputs=gr.File(label="Download Output File"),
        title="HTRflow MCP Server",
        description="Process handwritten text from uploaded file or URL and get output file in specified format",
        api_name="htrflow_htr",
    )
    return demo

if __name__ == "__main__":
    demo = create_htrflow_mcp_server()
    demo.launch(mcp_server=True, share=False, debug=False)