Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,840 Bytes
cfb37bf fb3185e c662fe8 1ec4316 f094617 fb3185e cfb37bf c662fe8 fb3185e f094617 fb3185e f094617 fb3185e f094617 fb3185e f094617 fb3185e f094617 fb3185e f094617 fb3185e 6d382b7 91e2f1d 6d382b7 91e2f1d 6d382b7 91e2f1d 6d382b7 91e2f1d fb3185e d6e55c9 f31f6ca d6e55c9 91e2f1d d6e55c9 fb3185e f31f6ca d6e55c9 fb3185e d6e55c9 91e2f1d fb3185e c662fe8 f31f6ca c662fe8 d6e55c9 91e2f1d c662fe8 fb3185e 91e2f1d fb3185e c662fe8 fb3185e a987d91 c662fe8 fb3185e c662fe8 6d382b7 c662fe8 f31f6ca 91e2f1d c662fe8 91e2f1d fb3185e 91e2f1d fb3185e 91e2f1d 6d382b7 fb3185e 6d382b7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 |
import gradio as gr
import json
import tempfile
import os
from typing import List, Optional, Literal
from PIL import Image
import spaces
from pathlib import Path
from htrflow.volume.volume import Collection
from htrflow.pipeline.pipeline import Pipeline
DEFAULT_OUTPUT = "alto"
CHOICES = ["txt", "alto", "page", "json"]
PIPELINE_CONFIGS = {
"letter_english": {
"steps": [
{
"step": "Segmentation",
"settings": {
"model": "yolo",
"model_settings": {"model": "Riksarkivet/yolov9-lines-within-regions-1"},
"generation_settings": {"batch_size": 8},
},
},
{
"step": "TextRecognition",
"settings": {
"model": "TrOCR",
"model_settings": {"model": "microsoft/trocr-base-handwritten"},
"generation_settings": {"batch_size": 16},
},
},
{"step": "OrderLines"},
]
},
"letter_swedish": {
"steps": [
{
"step": "Segmentation",
"settings": {
"model": "yolo",
"model_settings": {"model": "Riksarkivet/yolov9-lines-within-regions-1"},
"generation_settings": {"batch_size": 8},
},
},
{
"step": "TextRecognition",
"settings": {
"model": "TrOCR",
"model_settings": {"model": "Riksarkivet/trocr-base-handwritten-hist-swe-2"},
"generation_settings": {"batch_size": 16},
},
},
{"step": "OrderLines"},
]
},
"spread_english": {
"steps": [
{
"step": "Segmentation",
"settings": {
"model": "yolo",
"model_settings": {"model": "Riksarkivet/yolov9-regions-1"},
"generation_settings": {"batch_size": 4},
},
},
{
"step": "Segmentation",
"settings": {
"model": "yolo",
"model_settings": {"model": "Riksarkivet/yolov9-lines-within-regions-1"},
"generation_settings": {"batch_size": 8},
},
},
{
"step": "TextRecognition",
"settings": {
"model": "TrOCR",
"model_settings": {"model": "microsoft/trocr-base-handwritten"},
"generation_settings": {"batch_size": 16},
},
},
{"step": "ReadingOrderMarginalia", "settings": {"two_page": True}},
]
},
"spread_swedish": {
"steps": [
{
"step": "Segmentation",
"settings": {
"model": "yolo",
"model_settings": {"model": "Riksarkivet/yolov9-regions-1"},
"generation_settings": {"batch_size": 4},
},
},
{
"step": "Segmentation",
"settings": {
"model": "yolo",
"model_settings": {"model": "Riksarkivet/yolov9-lines-within-regions-1"},
"generation_settings": {"batch_size": 8},
},
},
{
"step": "TextRecognition",
"settings": {
"model": "TrOCR",
"model_settings": {"model": "Riksarkivet/trocr-base-handwritten-hist-swe-2"},
"generation_settings": {"batch_size": 16},
},
},
{"step": "ReadingOrderMarginalia", "settings": {"two_page": True}},
]
},
}
@spaces.GPU
def htrflow_htr(image_path: str, document_type: Literal["letter_english", "letter_swedish", "spread_english", "spread_swedish"] = "letter_swedish", output_format: Literal["txt", "alto", "page", "json"] = DEFAULT_OUTPUT, custom_settings: Optional[str] = None) -> str:
"""
Process handwritten text recognition (HTR) on uploaded images and return extracted text in the specified format.
This function uses machine learning models to automatically detect, segment, and transcribe handwritten text
from historical documents. It supports different document types and languages, with specialized models
trained on historical handwriting from the Swedish National Archives (Riksarkivet).
Args:
image_path (str): The file path or URL to the image containing handwritten text to be processed.
Supports common image formats like JPG, PNG, TIFF.
document_type (Literal): The type of document and language processing template to use.
Available options:
- "letter_english": Single-page English handwritten letters (default: "letter_swedish")
- "letter_swedish": Single-page Swedish handwritten letters
- "spread_english": Two-page spread English documents with marginalia
- "spread_swedish": Two-page spread Swedish documents with marginalia
Default: "letter_swedish"
output_format (Literal): The format for the output file containing the transcribed text.
Available options:
- "txt": Plain text format with line breaks
- "alto": ALTO XML format with detailed layout and coordinate information
- "page": PAGE XML format with structural markup and positioning data
- "json": JSON format with structured text, layout information and metadata
Default: "alto"
Note: Both "alto" and "page" formats are XML-based with layout information.
custom_settings (Optional[str]): Advanced users can provide custom pipeline configuration as a
JSON string to override the default processing steps. This allows
fine-tuning of model parameters, batch sizes, and processing workflow.
Default: None (uses predefined configuration for document_type)
Returns:
str: The file path to the generated output file containing the transcribed text in the requested format,
or an error message if processing fails. The output file will be named based on the original
image filename with the appropriate extension (.txt, .xml, or .json).
"""
if not image_path:
return "Error: No image provided"
try:
original_filename = Path(image_path).stem or "output"
if custom_settings:
try:
config = json.loads(custom_settings)
except json.JSONDecodeError:
return "Error: Invalid JSON in custom_settings parameter"
else:
config = PIPELINE_CONFIGS[document_type]
collection = Collection([image_path])
pipeline = Pipeline.from_config(config)
try:
processed_collection = pipeline.run(collection)
except Exception as pipeline_error:
return f"Error: Pipeline execution failed: {str(pipeline_error)}"
temp_dir = Path(tempfile.mkdtemp())
export_dir = temp_dir / output_format
processed_collection.save(directory=str(export_dir), serializer=output_format)
output_file_path = None
for root, _, files in os.walk(export_dir):
for file in files:
old_path = os.path.join(root, file)
file_ext = Path(file).suffix
new_filename = f"{original_filename}.{output_format}" if not file_ext else f"{original_filename}{file_ext}"
new_path = os.path.join(root, new_filename)
os.rename(old_path, new_path)
output_file_path = new_path
break
if output_file_path and os.path.exists(output_file_path):
return output_file_path
else:
return "Error: Failed to generate output file"
except Exception as e:
return f"Error: HTR processing failed: {str(e)}"
def extract_text_from_collection(collection: Collection) -> str:
text_lines = []
for page in collection.pages:
for node in page.traverse():
if hasattr(node, "text") and node.text:
text_lines.append(node.text)
return "\n".join(text_lines)
def create_htrflow_mcp_server():
demo = gr.Interface(
fn=htrflow_htr,
inputs=[
gr.Image(type="filepath", label="Upload Image or Enter URL"),
gr.Dropdown(choices=["letter_english", "letter_swedish", "spread_english", "spread_swedish"], value="letter_swedish", label="Document Type"),
gr.Dropdown(choices=CHOICES, value=DEFAULT_OUTPUT, label="Output Format"),
gr.Textbox(label="Custom Settings (JSON)", placeholder="Optional custom pipeline settings", value=""),
],
outputs=gr.File(label="Download Output File"),
title="HTRflow MCP Server",
description="Process handwritten text from uploaded file or URL and get output file in specified format",
api_name="htrflow_htr",
)
return demo
if __name__ == "__main__":
demo = create_htrflow_mcp_server()
demo.launch(mcp_server=True, share=False, debug=False) |