Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -116,9 +116,9 @@ PIPELINE_CONFIGS = {
|
|
116 |
}
|
117 |
|
118 |
@spaces.GPU
|
119 |
-
def
|
120 |
"""
|
121 |
-
Process handwritten text recognition (HTR) on uploaded images and return
|
122 |
|
123 |
This function uses machine learning models to automatically detect, segment, and transcribe handwritten text
|
124 |
from historical documents. It supports different document types and languages, with specialized models
|
@@ -130,8 +130,8 @@ def htrflow_htr(image_path: str, document_type: Literal["letter_english", "lette
|
|
130 |
|
131 |
document_type (Literal): The type of document and language processing template to use.
|
132 |
Available options:
|
133 |
-
- "letter_english": Single-page English handwritten letters
|
134 |
-
- "letter_swedish": Single-page Swedish handwritten letters
|
135 |
- "spread_english": Two-page spread English documents with marginalia
|
136 |
- "spread_swedish": Two-page spread Swedish documents with marginalia
|
137 |
Default: "letter_swedish"
|
@@ -143,20 +143,20 @@ def htrflow_htr(image_path: str, document_type: Literal["letter_english", "lette
|
|
143 |
- "page": PAGE XML format with structural markup and positioning data
|
144 |
- "json": JSON format with structured text, layout information and metadata
|
145 |
Default: "alto"
|
146 |
-
Note: Both "alto" and "page" formats are XML-based with layout information.
|
147 |
|
148 |
custom_settings (Optional[str]): Advanced users can provide custom pipeline configuration as a
|
149 |
-
JSON string to override the default processing steps.
|
150 |
-
fine-tuning of model parameters, batch sizes, and processing workflow.
|
151 |
Default: None (uses predefined configuration for document_type)
|
152 |
|
153 |
Returns:
|
154 |
-
str:
|
155 |
-
|
156 |
-
|
|
|
|
|
157 |
"""
|
158 |
if not image_path:
|
159 |
-
return "
|
160 |
|
161 |
try:
|
162 |
original_filename = Path(image_path).stem or "output"
|
@@ -165,7 +165,7 @@ def htrflow_htr(image_path: str, document_type: Literal["letter_english", "lette
|
|
165 |
try:
|
166 |
config = json.loads(custom_settings)
|
167 |
except json.JSONDecodeError:
|
168 |
-
return "
|
169 |
else:
|
170 |
config = PIPELINE_CONFIGS[document_type]
|
171 |
|
@@ -175,7 +175,7 @@ def htrflow_htr(image_path: str, document_type: Literal["letter_english", "lette
|
|
175 |
try:
|
176 |
processed_collection = pipeline.run(collection)
|
177 |
except Exception as pipeline_error:
|
178 |
-
return
|
179 |
|
180 |
temp_dir = Path(tempfile.mkdtemp())
|
181 |
export_dir = temp_dir / output_format
|
@@ -193,12 +193,40 @@ def htrflow_htr(image_path: str, document_type: Literal["letter_english", "lette
|
|
193 |
break
|
194 |
|
195 |
if output_file_path and os.path.exists(output_file_path):
|
196 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
197 |
else:
|
198 |
-
return "
|
199 |
|
200 |
except Exception as e:
|
201 |
-
return
|
|
|
|
|
|
|
|
|
202 |
|
203 |
def extract_text_from_collection(collection: Collection) -> str:
|
204 |
text_lines = []
|
@@ -209,19 +237,37 @@ def extract_text_from_collection(collection: Collection) -> str:
|
|
209 |
return "\n".join(text_lines)
|
210 |
|
211 |
def create_htrflow_mcp_server():
|
212 |
-
|
213 |
-
fn=
|
214 |
inputs=[
|
215 |
gr.Image(type="filepath", label="Upload Image or Enter URL"),
|
216 |
gr.Dropdown(choices=["letter_english", "letter_swedish", "spread_english", "spread_swedish"], value="letter_swedish", label="Document Type"),
|
217 |
gr.Dropdown(choices=CHOICES, value=DEFAULT_OUTPUT, label="Output Format"),
|
218 |
gr.Textbox(label="Custom Settings (JSON)", placeholder="Optional custom pipeline settings", value=""),
|
219 |
],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
220 |
outputs=gr.File(label="Download Output File"),
|
221 |
-
|
222 |
-
|
223 |
-
api_name="htrflow_htr",
|
224 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
225 |
return demo
|
226 |
|
227 |
if __name__ == "__main__":
|
|
|
116 |
}
|
117 |
|
118 |
@spaces.GPU
|
119 |
+
def htrflow_htr_url(image_path: str, document_type: Literal["letter_english", "letter_swedish", "spread_english", "spread_swedish"] = "letter_swedish", output_format: Literal["txt", "alto", "page", "json"] = DEFAULT_OUTPUT, custom_settings: Optional[str] = None) -> str:
|
120 |
"""
|
121 |
+
Process handwritten text recognition (HTR) on uploaded images and return both file content and download link.
|
122 |
|
123 |
This function uses machine learning models to automatically detect, segment, and transcribe handwritten text
|
124 |
from historical documents. It supports different document types and languages, with specialized models
|
|
|
130 |
|
131 |
document_type (Literal): The type of document and language processing template to use.
|
132 |
Available options:
|
133 |
+
- "letter_english": Single-page English handwritten letters
|
134 |
+
- "letter_swedish": Single-page Swedish handwritten letters (default)
|
135 |
- "spread_english": Two-page spread English documents with marginalia
|
136 |
- "spread_swedish": Two-page spread Swedish documents with marginalia
|
137 |
Default: "letter_swedish"
|
|
|
143 |
- "page": PAGE XML format with structural markup and positioning data
|
144 |
- "json": JSON format with structured text, layout information and metadata
|
145 |
Default: "alto"
|
|
|
146 |
|
147 |
custom_settings (Optional[str]): Advanced users can provide custom pipeline configuration as a
|
148 |
+
JSON string to override the default processing steps.
|
|
|
149 |
Default: None (uses predefined configuration for document_type)
|
150 |
|
151 |
Returns:
|
152 |
+
str: JSON string containing both the file content and download link:
|
153 |
+
{
|
154 |
+
"content": "file_content_here",
|
155 |
+
"file_path": "[file_name](http://your-server:port/gradio_api//file=/tmp/gradio/{temp_folder}/{file_name}.{file_format})"
|
156 |
+
}
|
157 |
"""
|
158 |
if not image_path:
|
159 |
+
return json.dumps({"error": "No image provided"})
|
160 |
|
161 |
try:
|
162 |
original_filename = Path(image_path).stem or "output"
|
|
|
165 |
try:
|
166 |
config = json.loads(custom_settings)
|
167 |
except json.JSONDecodeError:
|
168 |
+
return json.dumps({"error": "Invalid JSON in custom_settings parameter"})
|
169 |
else:
|
170 |
config = PIPELINE_CONFIGS[document_type]
|
171 |
|
|
|
175 |
try:
|
176 |
processed_collection = pipeline.run(collection)
|
177 |
except Exception as pipeline_error:
|
178 |
+
return json.dumps({"error": f"Pipeline execution failed: {str(pipeline_error)}"})
|
179 |
|
180 |
temp_dir = Path(tempfile.mkdtemp())
|
181 |
export_dir = temp_dir / output_format
|
|
|
193 |
break
|
194 |
|
195 |
if output_file_path and os.path.exists(output_file_path):
|
196 |
+
# Read the file content
|
197 |
+
try:
|
198 |
+
with open(output_file_path, 'r', encoding='utf-8') as f:
|
199 |
+
file_content = f.read()
|
200 |
+
except UnicodeDecodeError:
|
201 |
+
# If UTF-8 fails, try with different encoding or read as binary for certain formats
|
202 |
+
try:
|
203 |
+
with open(output_file_path, 'r', encoding='latin-1') as f:
|
204 |
+
file_content = f.read()
|
205 |
+
except:
|
206 |
+
with open(output_file_path, 'rb') as f:
|
207 |
+
file_content = f.read().decode('utf-8', errors='replace')
|
208 |
+
|
209 |
+
# Create the markdown link
|
210 |
+
file_name = Path(output_file_path).name
|
211 |
+
temp_folder = Path(output_file_path).parent.name
|
212 |
+
markdown_link = f"[{file_name}](http://your-server:port/gradio_api//file=/tmp/gradio/{temp_folder}/{file_name})"
|
213 |
+
|
214 |
+
# Return JSON with both content and file path
|
215 |
+
result = {
|
216 |
+
"content": file_content,
|
217 |
+
"file_path": markdown_link
|
218 |
+
}
|
219 |
+
|
220 |
+
return json.dumps(result, ensure_ascii=False, indent=2)
|
221 |
else:
|
222 |
+
return json.dumps({"error": "Failed to generate output file"})
|
223 |
|
224 |
except Exception as e:
|
225 |
+
return json.dumps({"error": f"HTR processing failed: {str(e)}"})
|
226 |
+
|
227 |
+
|
228 |
+
def htrflow_visualizer(image: str, htr_document: str) -> str:
|
229 |
+
pass
|
230 |
|
231 |
def extract_text_from_collection(collection: Collection) -> str:
|
232 |
text_lines = []
|
|
|
237 |
return "\n".join(text_lines)
|
238 |
|
239 |
def create_htrflow_mcp_server():
|
240 |
+
htrflow_url = gr.Interface(
|
241 |
+
fn=htrflow_htr_url,
|
242 |
inputs=[
|
243 |
gr.Image(type="filepath", label="Upload Image or Enter URL"),
|
244 |
gr.Dropdown(choices=["letter_english", "letter_swedish", "spread_english", "spread_swedish"], value="letter_swedish", label="Document Type"),
|
245 |
gr.Dropdown(choices=CHOICES, value=DEFAULT_OUTPUT, label="Output Format"),
|
246 |
gr.Textbox(label="Custom Settings (JSON)", placeholder="Optional custom pipeline settings", value=""),
|
247 |
],
|
248 |
+
outputs=gr.Textbox(label="HTR Result (JSON)", lines=10),
|
249 |
+
description="Process handwritten text from uploaded file or URL and get both content and download link in JSON format",
|
250 |
+
api_name="htrflow_htr_url",
|
251 |
+
)
|
252 |
+
|
253 |
+
htrflow_viz = gr.Interface(
|
254 |
+
fn=htrflow_visualizer,
|
255 |
+
inputs=[
|
256 |
+
gr.Image(type="filepath", label="Upload Image or Enter URL"),
|
257 |
+
gr.Textbox(label="HTR Document content", placeholder="Path to the HTR document file", value=""),
|
258 |
+
],
|
259 |
outputs=gr.File(label="Download Output File"),
|
260 |
+
description="Visualize document",
|
261 |
+
api_name="htrflow_visualizer"
|
|
|
262 |
)
|
263 |
+
|
264 |
+
demo = gr.TabbedInterface(
|
265 |
+
[htrflow_url, htrflow_viz],
|
266 |
+
["HTR URL", "HTR Visualizer"],
|
267 |
+
title="HTRflow Handwritten Text Recognition",
|
268 |
+
description="Extract text and visualize handwritten historical documents using HTRflow",
|
269 |
+
)
|
270 |
+
|
271 |
return demo
|
272 |
|
273 |
if __name__ == "__main__":
|