Spaces:
Sleeping
Sleeping
| import numpy as np | |
| import pandas as pd | |
| from sklearn.neighbors import KNeighborsRegressor | |
| from joblib import dump, load | |
| import gradio | |
| scaler = load('scaler_lab4.joblib') | |
| KNN_Regressor = load('knn_lab4.joblib') | |
| ## Building a Fubction for prediction: | |
| def predictPrice(input1, input2, input3, input4, input5, input6, input7, input8): | |
| features = [input1, input2, input3, input4, input5, input6, input7, input8] | |
| scaler.fit(features) | |
| features_array = np.array(features).reshape(1, -1) | |
| prediction = KNN_Regressor.predict(features_array) | |
| return prediction | |
| ## Buidling inputs and outputs: | |
| input1 = gr.Slider(-124.35, -114.31, step=5, label = "Longitude") | |
| input2 = gr.Slider(32.54, 41.95, step=5, label = "Latitude") | |
| input3 = gr.Slider(1, 52.0, step=5, label = "Housing_median_age (Year)") | |
| input4 = gr.Slider(1, 39320.0, step=5, label = "Total_rooms") | |
| input5 = gr.Slider(1, 6445.0, step=5, label = "Total_bedrooms") | |
| input6 = gr.Slider(1, 35682.0, step=5, label = "Population") | |
| input7 = gr.Slider(1, 6082.0, step=5, label = "Households") | |
| input8 = gr.Slider(0, 15.0, step=5, label = "Median_income") | |
| output1 = gr.Textbox(label = "House Value") | |
| ##title Putting it all together: | |
| gr.Interface(fn=predictPrice, inputs=[input1, input2, input3, input4, input5, input6, input7, input8], | |
| outputs=output1).launch(show_error=True) |