Spaces:
Sleeping
Sleeping
File size: 2,004 Bytes
0bb04ea 9f8c851 9da41c7 9f8c851 0bb04ea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 |
from dotenv import load_dotenv
import os
import streamlit as st
from transformers import pipeline
# Load environment variables from .env file
load_dotenv()
# Get the Hugging Face API token from environment variables
hf_token = os.getenv("textgen")
if not hf_token:
st.error("Hugging Face API token is not set. Please set the HUGGINGFACE_HUB_TOKEN environment variable.")
else:
# Initialize the Hugging Face pipeline with authentication
pipe = pipeline("text-generation", model="mistralai/mathstral-7B-v0.1", use_auth_token=hf_token)
# Function to get response from the model
def get_response(input_text, keywords, blog_style, max_new_tokens=250):
# Prompt Template
template = """
Generate technical project ideas for {blog_style} job profile for a topic {input_text} using these keywords: {keywords}.
"""
prompt = template.format(blog_style=blog_style, input_text=input_text, keywords=keywords)
# Generate the response from the model
response = pipe(prompt, max_new_tokens=max_new_tokens)
return response[0]['generated_text'] # Extract the generated text
# Streamlit configuration
st.set_page_config(page_title="Generate Project Idea",
page_icon='🤖',
layout='centered',
initial_sidebar_state='collapsed')
st.header("Generate Project Idea 🤖")
input_text = st.text_input("Enter the Topic")
# Creating two more columns for additional fields
col1, col2 = st.columns([5, 5])
with col1:
keywords = st.text_input('Keywords')
with col2:
blog_style = st.selectbox('Generating project idea for',
('Researchers', 'Data Scientist', 'Software Developer', 'Common People'), index=0)
submit = st.button("Generate")
# Final response
if submit:
response = get_response(input_text, keywords, blog_style)
st.write(response)
|