Spaces:
Sleeping
Sleeping
import streamlit as st | |
#from transformers import pipeline | |
# Function to get response from LLaMA 2 model | |
from transformers import MistralForCausalLM | |
from transformers import AutoTokenizer | |
tokenizer = AutoTokenizer.from_pretrained('mistralai/mathstral-7B-v0.1') | |
def getLLamaresponse(input_text, keywords, blog_style): | |
# Load the LLaMA 2 model from Hugging Face | |
model_name = MistralForCausalLM.from_pretrained('mistralai/mathstral-7B-v0.1') | |
#llm = pipeline('text-generation', model=model_name) | |
# Prompt Template | |
template = """ | |
Generate project idea for {blog_style} by using keywords like {keywords} for the profession of {input_text}. | |
""" | |
# Format the prompt | |
prompt = template.format(blog_style=blog_style, input_text=input_text, keywords=keywords) | |
# Generate the response from the LLaMA 2 model | |
response = model.generate(prompt, max_length=250, temperature=0.01) | |
return response[0]['generated_text'] | |
st.set_page_config(page_title="Generate Project Idea", | |
page_icon='π€', | |
layout='centered', | |
initial_sidebar_state='collapsed') | |
st.header("Generate Project Idea π€") | |
input_text = st.text_input("Enter the Topic") | |
# Creating two more columns for additional fields | |
col1, col2 = st.columns([5, 5]) | |
with col1: | |
no_words = st.text_input('Keywords') | |
with col2: | |
blog_style = st.selectbox('Generating project idea for', | |
('Researchers', 'Data Scientist', 'Software Developer', 'Common People', " "), index=0) | |
submit = st.button("Generate") | |
# Final response | |
if submit: | |
response = getLLamaresponse(input_text, no_words, blog_style) | |
st.write(response) | |