Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,12 +1,11 @@
|
|
1 |
import streamlit as st
|
2 |
-
from langchain.prompts import PromptTemplate
|
3 |
from transformers import pipeline
|
4 |
|
5 |
# Initialize the Hugging Face pipeline
|
6 |
pipe = pipeline("text2text-generation", model="google/flan-t5-small")
|
7 |
|
8 |
# Function to get response from the model
|
9 |
-
def get_response(input_text, keywords, blog_style):
|
10 |
# Prompt Template
|
11 |
template = """
|
12 |
Generate technical project ideas for {blog_style} job profile for a topic {input_text} using these keywords: {keywords}.
|
@@ -15,7 +14,7 @@ def get_response(input_text, keywords, blog_style):
|
|
15 |
prompt = template.format(blog_style=blog_style, input_text=input_text, keywords=keywords)
|
16 |
|
17 |
# Generate the response from the model
|
18 |
-
response = pipe(prompt)
|
19 |
return response[0]['generated_text'] # Extract the generated text
|
20 |
|
21 |
# Streamlit configuration
|
@@ -37,9 +36,12 @@ with col2:
|
|
37 |
blog_style = st.selectbox('Generating project idea for',
|
38 |
('Researchers', 'Data Scientist', 'Software Developer', 'Common People'), index=0)
|
39 |
|
|
|
|
|
|
|
40 |
submit = st.button("Generate")
|
41 |
|
42 |
# Final response
|
43 |
if submit:
|
44 |
-
response = get_response(input_text, keywords, blog_style)
|
45 |
st.write(response)
|
|
|
1 |
import streamlit as st
|
|
|
2 |
from transformers import pipeline
|
3 |
|
4 |
# Initialize the Hugging Face pipeline
|
5 |
pipe = pipeline("text2text-generation", model="google/flan-t5-small")
|
6 |
|
7 |
# Function to get response from the model
|
8 |
+
def get_response(input_text, keywords, blog_style, max_new_tokens=50):
|
9 |
# Prompt Template
|
10 |
template = """
|
11 |
Generate technical project ideas for {blog_style} job profile for a topic {input_text} using these keywords: {keywords}.
|
|
|
14 |
prompt = template.format(blog_style=blog_style, input_text=input_text, keywords=keywords)
|
15 |
|
16 |
# Generate the response from the model
|
17 |
+
response = pipe(prompt, max_new_tokens=max_new_tokens)
|
18 |
return response[0]['generated_text'] # Extract the generated text
|
19 |
|
20 |
# Streamlit configuration
|
|
|
36 |
blog_style = st.selectbox('Generating project idea for',
|
37 |
('Researchers', 'Data Scientist', 'Software Developer', 'Common People'), index=0)
|
38 |
|
39 |
+
# Adding an additional field for max_new_tokens
|
40 |
+
max_new_tokens = st.slider('Max New Tokens', min_value=10, max_value=100, value=50, step=10)
|
41 |
+
|
42 |
submit = st.button("Generate")
|
43 |
|
44 |
# Final response
|
45 |
if submit:
|
46 |
+
response = get_response(input_text, keywords, blog_style, max_new_tokens)
|
47 |
st.write(response)
|