File size: 4,144 Bytes
ab50b27
69a18df
d31c699
d8f5140
69a18df
 
ab50b27
d31c699
 
 
8a8357f
69a18df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a2bfd8d
 
 
 
 
 
69a18df
a2bfd8d
 
 
 
 
 
 
69a18df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a2bfd8d
69a18df
a2bfd8d
 
 
69a18df
a2bfd8d
 
 
 
 
69a18df
 
 
 
a2bfd8d
69a18df
 
a2bfd8d
b073561
8b8721a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import streamlit as st
from thronetrader import StrategicSignals
import requests
from Pandas_Market_Predictor import Pandas_Market_Predictor
import pandas as pd


# Hard-coded API key for demonstration purposes
API_KEY = "QR8F9B7T6R2SWTAT"

def fetch_alpha_vantage_data(api_key, symbol):
    url = f'https://www.alphavantage.co/query?function=TIME_SERIES_INTRADAY&symbol={symbol}&interval=5min&apikey={api_key}'
    response = requests.get(url)
    alpha_vantage_data = response.json()
    return alpha_vantage_data

def main():
    st.title("Stock Trend Predictor")

    # User input for stock symbol
    symbol = st.text_input("Enter Stock Symbol (e.g., IBM):")

    if not symbol:
        st.warning("Please enter a valid stock symbol.")
        st.stop()

    # Use the hard-coded API key
    api_key = API_KEY

    # Fetch Alpha Vantage data
    alpha_vantage_data = fetch_alpha_vantage_data(api_key, symbol)

    # Extract relevant data from Alpha Vantage response
    alpha_vantage_time_series = alpha_vantage_data.get('Time Series (5min)', {})
    df = pd.DataFrame(alpha_vantage_time_series).T
    df.index = pd.to_datetime(df.index)
    df = df.dropna(axis=0)

    # Display the raw data
    st.subheader("Raw Data:")
    st.write(df)

if __name__ == "__main__":
    main()


 

# Hard-coded API key for demonstration purposes
API_KEY = "QR8F9B7T6R2SWTAT"

def fetch_alpha_vantage_data(api_key, symbol):
    
    url = f'https://www.alphavantage.co/query?function=TIME_SERIES_INTRADAY&symbol={symbol}&interval=5min&apikey={api_key}'
    response = requests.get(url)
    alpha_vantage_data = response.json()
    return alpha_vantage_data

def calculate_indicators(data):
    # Convert all columns to numeric
    data = data.apply(pd.to_numeric, errors='coerce')

    # Example: Simple condition for doji and inside
    data['Doji'] = abs(data['Close'] - data['Open']) <= 0.01 * (data['High'] - data['Low'])
    data['Inside'] = (data['High'] < data['High'].shift(1)) & (data['Low'] > data['Low'].shift(1))
    return data

def display_signals(signal_type, signals):
    st.subheader(f"{signal_type} Signals:")
    st.write(signals)

def main():
    st.title("Stock Trend Predictor")

    # Input for stock symbol
    symbol = st.text_input("Enter stock symbol (e.g., AAPL):", "AAPL")

    # Fetch Alpha Vantage data
    alpha_vantage_data = fetch_alpha_vantage_data(API_KEY, symbol)

    # Extract relevant data from Alpha Vantage response
    alpha_vantage_time_series = alpha_vantage_data.get('Time Series (5min)', {})
    df = pd.DataFrame(alpha_vantage_time_series).T
    df.index = pd.to_datetime(df.index)
    df = df.dropna(axis=0)

    # Rename columns
    df = df.rename(columns={'1. open': 'Open', '2. high': 'High', '3. low': 'Low', '4. close': 'Close', '5. volume': 'Volume'})

    # Calculate indicators
    df = calculate_indicators(df)

    # Display stock trading signals
    strategic_signals = StrategicSignals(symbol=symbol)

    # Display loading message during processing
    with st.spinner("Predicting signals using Strategic Indicators..."):
        # Display signals
        st.subheader(":orange[Strategic Indicators Trend Prediction]")
        display_signals("Bollinger Bands", strategic_signals.get_bollinger_bands_signals())
        display_signals("Breakout", strategic_signals.get_breakout_signals())
        display_signals("Crossover", strategic_signals.get_crossover_signals())
        display_signals("MACD", strategic_signals.get_macd_signals())
        display_signals("RSI", strategic_signals.get_rsi_signals())

    # Create predictor
    my_market_predictor = Pandas_Market_Predictor(df)

    # Predict Trend
    indicators = ["Doji", "Inside"]

    # Display loading message during prediction
    with st.spinner("Predicting trend using AI ...."):
        # Predict trend
        trend = my_market_predictor.Trend_Detection(indicators, 10)

    # Display results
    st.subheader(":orange[AI Trend Prediction]")
    st.write("Buy Trend :", trend['BUY'])
    st.write("Sell Trend :", trend['SELL'])

    # Delete the DataFrame to release memory
    del df

if __name__ == "__main__":
    main()