File size: 2,288 Bytes
3f96245
 
adbc0ad
3f96245
 
dd448e5
 
 
3f96245
7d80d52
3f96245
 
 
 
adbc0ad
dcf0ee0
b5416e9
76337a5
dcf0ee0
77a8be7
 
adbc0ad
 
3f96245
 
 
dcf0ee0
dd448e5
3f96245
dcf0ee0
dd448e5
 
dcf0ee0
4f7b738
dd448e5
 
 
 
dcf0ee0
77a8be7
d7fdf9f
dcf0ee0
4f7b738
adbc0ad
dcf0ee0
4f7b738
adbc0ad
dcf0ee0
0c198c2
adbc0ad
 
dcf0ee0
adbc0ad
 
 
e12bf4f
 
 
 
 
 
0c198c2
dcf0ee0
adbc0ad
3f96245
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import streamlit as st
import requests
from Pandas_Market_Predictor import Pandas_Market_Predictor
import pandas as pd

# Hard-coded API key for demonstration purposes
API_KEY = "QR8F9B7T6R2SWTAT"

def fetch_alpha_vantage_data(api_key):
    url = f'https://www.alphavantage.co/query?function=TIME_SERIES_INTRADAY&symbol=IBM&interval=5min&apikey={api_key}'
    response = requests.get(url)
    alpha_vantage_data = response.json()
    return alpha_vantage_data

def calculate_indicators(data):
    # Convert all columns to numeric
    data = data.apply(pd.to_numeric, errors='coerce')

    # Example: Simple condition for doji and inside
    data['Doji'] = abs(data['Close'] - data['open']) <= 0.01 * (data['High'] - data['Low'])
    data['Inside'] = (data['High'] < data['High'].shift(1)) & (data['Low'] > data['Low'].shift(1))
    return data

def main():
    st.title("Stock Trend Predictor")

    # Use the hard-coded API key
    api_key = API_KEY

    # Fetch Alpha Vantage data
    alpha_vantage_data = fetch_alpha_vantage_data(api_key)

    # Extract relevant data from Alpha Vantage response
    alpha_vantage_time_series = alpha_vantage_data.get('Time Series (5min)', {})
    df = pd.DataFrame(alpha_vantage_time_series).T
    df.index = pd.to_datetime(df.index)
    df = df.dropna(axis=0)

    # Rename columns
    df = df.rename(columns={'1. open': 'open', '2. high': 'High', '3. low': 'Low', '4. close': 'Close', '5. volume': 'volume'})

    # Calculate indicators
    df = calculate_indicators(df)

    # Create predictor
    my_market_predictor = Pandas_Market_Predictor(df)

    # Predict Trend
    indicators = ["Doji", "Inside"]
    trend = my_market_predictor.Trend_Detection(indicators, 10)

    # Display results
    st.subheader("Predicted Trend:")
    st.write("Buy Trend :", trend['BUY'])
    st.write("Sell Trend :", trend['SELL'])

    # Calculate and display Support and Resistance Levels
    levels = my_market_predictor.Support_Resistance_Estimation_Tool(indicators)
    st.subheader("Support and Resistance Levels:")
    st.write("Support Level:", levels.get('Support', 'Not Available'))
    st.write("Resistance Level:", levels.get('Resistance', 'Not Available'))

    # Delete the DataFrame to release memory
    del df

if __name__ == "__main__":
    main()