Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
import streamlit as st
|
2 |
import requests
|
|
|
3 |
import pandas as pd
|
4 |
|
5 |
# Hard-coded API key for demonstration purposes
|
@@ -11,6 +12,12 @@ def fetch_alpha_vantage_data(api_key):
|
|
11 |
alpha_vantage_data = response.json()
|
12 |
return alpha_vantage_data
|
13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
def main():
|
15 |
st.title("Stock Trend Predictor")
|
16 |
|
@@ -26,12 +33,27 @@ def main():
|
|
26 |
df.index = pd.to_datetime(df.index)
|
27 |
df = df.dropna(axis=0)
|
28 |
|
29 |
-
#
|
30 |
-
|
31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
-
#
|
34 |
-
|
35 |
|
36 |
if __name__ == "__main__":
|
37 |
main()
|
|
|
1 |
import streamlit as st
|
2 |
import requests
|
3 |
+
from Pandas_Market_Predictor import Pandas_Market_Predictor
|
4 |
import pandas as pd
|
5 |
|
6 |
# Hard-coded API key for demonstration purposes
|
|
|
12 |
alpha_vantage_data = response.json()
|
13 |
return alpha_vantage_data
|
14 |
|
15 |
+
def calculate_indicators(data):
|
16 |
+
# Example: Simple condition for doji and inside
|
17 |
+
data['Doji'] = abs(data['4. close'] - data['1. open']) <= 0.01 * (data['2. high'] - data['3. low'])
|
18 |
+
data['Inside'] = (data['2. high'] < data['3. high']) & (data['2. low'] > data['3. low'])
|
19 |
+
return data
|
20 |
+
|
21 |
def main():
|
22 |
st.title("Stock Trend Predictor")
|
23 |
|
|
|
33 |
df.index = pd.to_datetime(df.index)
|
34 |
df = df.dropna(axis=0)
|
35 |
|
36 |
+
# Rename columns
|
37 |
+
df = df.rename(columns={'1. open': 'open', '2. high': 'high', '3. low': 'low', '4. close': 'close', '5. volume': 'volume'})
|
38 |
+
|
39 |
+
# Calculate indicators
|
40 |
+
df = calculate_indicators(df)
|
41 |
+
|
42 |
+
# Create predictor
|
43 |
+
my_market_predictor = Pandas_Market_Predictor(df)
|
44 |
+
|
45 |
+
# Predict Trend
|
46 |
+
indicators = ["Doji", "Inside"]
|
47 |
+
trend = my_market_predictor.Trend_Detection(indicators, 10)
|
48 |
+
|
49 |
+
# Display results
|
50 |
+
st.subheader("Predicted Trend:")
|
51 |
+
st.write("Buy Trend :", trend['BUY'])
|
52 |
+
st.write("Sell Trend :", trend['SELL'])
|
53 |
+
st.write(f"Standard Deviation Percentage: {my_market_predictor.PERCENT_STD}%")
|
54 |
|
55 |
+
# Delete the DataFrame to release memory
|
56 |
+
del df
|
57 |
|
58 |
if __name__ == "__main__":
|
59 |
main()
|