File size: 2,033 Bytes
3f96245
 
adbc0ad
3f96245
 
dd448e5
 
 
3f96245
4f7b738
3f96245
 
 
 
adbc0ad
b5416e9
 
76337a5
adbc0ad
7d0ce76
235c728
adbc0ad
 
3f96245
 
 
dd448e5
 
3f96245
 
dd448e5
 
 
4f7b738
dd448e5
 
 
 
adbc0ad
4f7b738
d7fdf9f
4f7b738
 
adbc0ad
 
4f7b738
adbc0ad
 
 
 
 
 
 
 
 
 
dd448e5
adbc0ad
 
3f96245
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import streamlit as st
import requests
from Pandas_Market_Predictor import Pandas_Market_Predictor
import pandas as pd

# Hard-coded API key for demonstration purposes
API_KEY = "QR8F9B7T6R2SWTAT"

def fetch_alpha_vantage_data(api_key):
    url = f'https://www.alphavantage.co/query?function=TIME_SERIES_INTRADAY&symbol=IBM&interval=5min&apikey={api_key}'
    response = requests.get(url)
    alpha_vantage_data = response.json()
    return alpha_vantage_data

def calculate_indicators(data):
    # Convert all columns to numeric
    data = data.apply(pd.to_numeric, errors='coerce')

    # Example: Simple condition for doji and inside
    data['Doji'] = abs(data['Close'] - data['open']) <= 0.01 * (data['high'] - data['low'])
    data['Inside'] = (data['high'] < data['high'].shift(1)) & (data['low'] > data['low'].shift(1))
    return data

def main():
    st.title("Stock Trend Predictor")

    # Use the hard-coded API key
    api_key = API_KEY

    # Fetch Alpha Vantage data
    alpha_vantage_data = fetch_alpha_vantage_data(api_key)

    # Extract relevant data from Alpha Vantage response
    alpha_vantage_time_series = alpha_vantage_data.get('Time Series (5min)', {})
    df = pd.DataFrame(alpha_vantage_time_series).T
    df.index = pd.to_datetime(df.index)
    df = df.dropna(axis=0)

    # Rename columns
    df = df.rename(columns={'1. open': 'open', '2. high': 'high', '3. low': 'low', '4. close': 'Close', '5. volume': 'volume'})

    # Calculate indicators
    df = calculate_indicators(df)

    # Create predictor
    my_market_predictor = Pandas_Market_Predictor(df)

    # Predict Trend
    indicators = ["Doji", "Inside"]
    trend = my_market_predictor.Trend_Detection(indicators, 10)

    # Display results
    st.subheader("Predicted Trend:")
    st.write("Buy Trend :", trend['BUY'])
    st.write("Sell Trend :", trend['SELL'])
    st.write(f"Standard Deviation Percentage: {my_market_predictor.PERCENT_STD}%")

    # Delete the DataFrame to release memory
    del df

if __name__ == "__main__":
    main()