File size: 2,033 Bytes
3f96245 adbc0ad 3f96245 dd448e5 3f96245 4f7b738 3f96245 adbc0ad b5416e9 76337a5 adbc0ad 7d0ce76 235c728 adbc0ad 3f96245 dd448e5 3f96245 dd448e5 4f7b738 dd448e5 adbc0ad 4f7b738 d7fdf9f 4f7b738 adbc0ad 4f7b738 adbc0ad dd448e5 adbc0ad 3f96245 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 |
import streamlit as st
import requests
from Pandas_Market_Predictor import Pandas_Market_Predictor
import pandas as pd
# Hard-coded API key for demonstration purposes
API_KEY = "QR8F9B7T6R2SWTAT"
def fetch_alpha_vantage_data(api_key):
url = f'https://www.alphavantage.co/query?function=TIME_SERIES_INTRADAY&symbol=IBM&interval=5min&apikey={api_key}'
response = requests.get(url)
alpha_vantage_data = response.json()
return alpha_vantage_data
def calculate_indicators(data):
# Convert all columns to numeric
data = data.apply(pd.to_numeric, errors='coerce')
# Example: Simple condition for doji and inside
data['Doji'] = abs(data['Close'] - data['open']) <= 0.01 * (data['high'] - data['low'])
data['Inside'] = (data['high'] < data['high'].shift(1)) & (data['low'] > data['low'].shift(1))
return data
def main():
st.title("Stock Trend Predictor")
# Use the hard-coded API key
api_key = API_KEY
# Fetch Alpha Vantage data
alpha_vantage_data = fetch_alpha_vantage_data(api_key)
# Extract relevant data from Alpha Vantage response
alpha_vantage_time_series = alpha_vantage_data.get('Time Series (5min)', {})
df = pd.DataFrame(alpha_vantage_time_series).T
df.index = pd.to_datetime(df.index)
df = df.dropna(axis=0)
# Rename columns
df = df.rename(columns={'1. open': 'open', '2. high': 'high', '3. low': 'low', '4. close': 'Close', '5. volume': 'volume'})
# Calculate indicators
df = calculate_indicators(df)
# Create predictor
my_market_predictor = Pandas_Market_Predictor(df)
# Predict Trend
indicators = ["Doji", "Inside"]
trend = my_market_predictor.Trend_Detection(indicators, 10)
# Display results
st.subheader("Predicted Trend:")
st.write("Buy Trend :", trend['BUY'])
st.write("Sell Trend :", trend['SELL'])
st.write(f"Standard Deviation Percentage: {my_market_predictor.PERCENT_STD}%")
# Delete the DataFrame to release memory
del df
if __name__ == "__main__":
main() |