File size: 4,320 Bytes
ab50b27
d31c699
087ef0b
8a8357f
26d7e54
ab50b27
d31c699
 
 
8a8357f
 
d31c699
 
 
34c23a9
a261fc2
8a8357f
04f6c13
 
 
a261fc2
04f6c13
 
 
34c23a9
d31c699
 
 
8a8357f
 
 
 
d31c699
8a8357f
 
 
fc59e6f
8a8357f
d31c699
8a8357f
 
 
34c23a9
8a8357f
26d7e54
34c23a9
b073561
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab50b27
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import streamlit as st
import requests
import pandas as pd
from datetime import datetime
import time

# Hard-coded API key for demonstration purposes
API_KEY = "QR8F9B7T6R2SWTAT"

def fetch_alpha_vantage_data(api_key, symbol):
    url = f'https://www.alphavantage.co/query?function=GLOBAL_QUOTE&symbol={symbol}&apikey={api_key}'
    response = requests.get(url)
    alpha_vantage_data = response.json()
    return alpha_vantage_data

def main():
    st.title("Real-Time Stock Data")

    # User input for stock symbol
    symbol = st.text_input("Enter Stock Symbol (e.g., IBM):")

    if not symbol:
        st.warning("Please enter a valid stock symbol.")
        st.stop()

    # Use the hard-coded API key
    api_key = API_KEY

    # Continuously fetch and display real-time data
    while True:
        # Fetch Alpha Vantage data
        alpha_vantage_data = fetch_alpha_vantage_data(api_key, symbol)

        # Extract relevant data from Alpha Vantage response
        alpha_vantage_quote = alpha_vantage_data.get('Global Quote', {})
        df = pd.DataFrame([alpha_vantage_quote])
        df.index = [datetime.now()]  # Use the current timestamp as the index
        df = df.dropna(axis=0)

        # Display the real-time data
        st.subheader("Real-Time Data:")
        st.write(df)

        # Add a delay to avoid exceeding API rate limits
        time.sleep(60)  # Sleep for 60 seconds (adjust as needed)

if __name__ == "__main__":
    main()


 

# Hard-coded API key for demonstration purposes
API_KEY = "QR8F9B7T6R2SWTAT"

def fetch_alpha_vantage_data(api_key, symbol):
    
    url = f'https://www.alphavantage.co/query?function=TIME_SERIES_INTRADAY&symbol={symbol}&interval=5min&apikey={api_key}'
    response = requests.get(url)
    alpha_vantage_data = response.json()
    return alpha_vantage_data

def calculate_indicators(data):
    # Convert all columns to numeric
    data = data.apply(pd.to_numeric, errors='coerce')

    # Example: Simple condition for doji and inside
    data['Doji'] = abs(data['Close'] - data['Open']) <= 0.01 * (data['High'] - data['Low'])
    data['Inside'] = (data['High'] < data['High'].shift(1)) & (data['Low'] > data['Low'].shift(1))
    return data

def display_signals(signal_type, signals):
    st.subheader(f"{signal_type} Signals:")
    st.write(signals)

def main():
    st.title("Stock Trend Predictor")

    # Input for stock symbol
    symbol = st.text_input("Enter stock symbol (e.g., AAPL):", "AAPL")

    # Fetch Alpha Vantage data
    alpha_vantage_data = fetch_alpha_vantage_data(API_KEY, symbol)

    # Extract relevant data from Alpha Vantage response
    alpha_vantage_time_series = alpha_vantage_data.get('Time Series (5min)', {})
    df = pd.DataFrame(alpha_vantage_time_series).T
    df.index = pd.to_datetime(df.index)
    df = df.dropna(axis=0)

    # Rename columns
    df = df.rename(columns={'1. open': 'Open', '2. high': 'High', '3. low': 'Low', '4. close': 'Close', '5. volume': 'Volume'})

    # Calculate indicators
    df = calculate_indicators(df)

    # Display stock trading signals
    strategic_signals = StrategicSignals(symbol=symbol)

    # Display loading message during processing
    with st.spinner("Predicting signals using Strategic Indicators..."):
        # Display signals
        st.subheader(":orange[Strategic Indicators Trend Prediction]")
        display_signals("Bollinger Bands", strategic_signals.get_bollinger_bands_signals())
        display_signals("Breakout", strategic_signals.get_breakout_signals())
        display_signals("Crossover", strategic_signals.get_crossover_signals())
        display_signals("MACD", strategic_signals.get_macd_signals())
        display_signals("RSI", strategic_signals.get_rsi_signals())

    # Create predictor
    my_market_predictor = Pandas_Market_Predictor(df)

    # Predict Trend
    indicators = ["Doji", "Inside"]

    # Display loading message during prediction
    with st.spinner("Predicting trend using AI ...."):
        # Predict trend
        trend = my_market_predictor.Trend_Detection(indicators, 10)

    # Display results
    st.subheader(":orange[AI Trend Prediction]")
    st.write("Buy Trend :", trend['BUY'])
    st.write("Sell Trend :", trend['SELL'])

    # Delete the DataFrame to release memory
    del df

if __name__ == "__main__":
    main()