|
import streamlit as st |
|
import requests |
|
from Pandas_Market_Predictor import Pandas_Market_Predictor |
|
import pandas as pd |
|
from sklearn.model_selection import train_test_split |
|
from sklearn.linear_model import LinearRegression |
|
from sklearn.metrics import mean_squared_error, r2_score |
|
|
|
|
|
API_KEY = "QR8F9B7T6R2SWTAT" |
|
|
|
def fetch_alpha_vantage_data(api_key): |
|
url = f'https://www.alphavantage.co/query?function=TIME_SERIES_INTRADAY&symbol=IBM&interval=5min&apikey={api_key}' |
|
response = requests.get(url) |
|
alpha_vantage_data = response.json() |
|
return alpha_vantage_data |
|
|
|
def calculate_indicators(data): |
|
data = data.apply(pd.to_numeric, errors='coerce') |
|
data['Doji'] = abs(data['Close'] - data['Open']) <= 0.01 * (data['High'] - data['Low']) |
|
data['Inside'] = (data['High'] < data['High'].shift(1)) & (data['Low'] > data['Low'].shift(1)) |
|
return data |
|
|
|
def prepare_data(data, target_column='Close'): |
|
X = data.drop(target_column, axis=1) |
|
y = data[target_column] |
|
return X, y |
|
|
|
def train_linear_regression(X_train, y_train): |
|
model = LinearRegression() |
|
model.fit(X_train, y_train) |
|
return model |
|
|
|
def main(): |
|
st.title("Stock Price Predictor") |
|
|
|
|
|
api_key = API_KEY |
|
|
|
|
|
alpha_vantage_data = fetch_alpha_vantage_data(api_key) |
|
|
|
|
|
alpha_vantage_time_series = alpha_vantage_data.get('Time Series (5min)', {}) |
|
df = pd.DataFrame(alpha_vantage_time_series).T |
|
df.index = pd.to_datetime(df.index) |
|
df = df.dropna(axis=0) |
|
|
|
|
|
df = df.rename(columns={'1. open': 'Open', '2. high': 'High', '3. low': 'Low', '4. close': 'Close', '5. volume': 'Volume'}) |
|
|
|
|
|
df = calculate_indicators(df) |
|
|
|
|
|
my_market_predictor = Pandas_Market_Predictor(df) |
|
|
|
|
|
X, y = prepare_data(df) |
|
|
|
|
|
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) |
|
|
|
|
|
model = train_linear_regression(X_train, y_train) |
|
|
|
|
|
y_pred = model.predict(X_test) |
|
|
|
|
|
st.subheader("Linear Regression Results:") |
|
st.write("Mean Squared Error:", mean_squared_error(y_test, y_pred)) |
|
st.write("R-squared Score:", r2_score(y_test, y_pred)) |
|
|
|
|
|
del df |
|
|
|
if __name__ == "__main__": |
|
main() |