St / app.py
Geek7's picture
Update app.py
8b59267 verified
raw
history blame
2.61 kB
import streamlit as st
import requests
from Pandas_Market_Predictor import Pandas_Market_Predictor
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score
# Hard-coded API key for demonstration purposes
API_KEY = "QR8F9B7T6R2SWTAT"
def fetch_alpha_vantage_data(api_key):
url = f'https://www.alphavantage.co/query?function=TIME_SERIES_INTRADAY&symbol=IBM&interval=5min&apikey={api_key}'
response = requests.get(url)
alpha_vantage_data = response.json()
return alpha_vantage_data
def calculate_indicators(data):
data = data.apply(pd.to_numeric, errors='coerce')
data['Doji'] = abs(data['Close'] - data['Open']) <= 0.01 * (data['High'] - data['Low'])
data['Inside'] = (data['High'] < data['High'].shift(1)) & (data['Low'] > data['Low'].shift(1))
return data
def prepare_data(data, target_column='Close'):
X = data.drop(target_column, axis=1)
y = data[target_column]
return X, y
def train_linear_regression(X_train, y_train):
model = LinearRegression()
model.fit(X_train, y_train)
return model
def main():
st.title("Stock Price Predictor")
# Use the hard-coded API key
api_key = API_KEY
# Fetch Alpha Vantage data
alpha_vantage_data = fetch_alpha_vantage_data(api_key)
# Extract relevant data from Alpha Vantage response
alpha_vantage_time_series = alpha_vantage_data.get('Time Series (5min)', {})
df = pd.DataFrame(alpha_vantage_time_series).T
df.index = pd.to_datetime(df.index)
df = df.dropna(axis=0)
# Rename columns
df = df.rename(columns={'1. open': 'Open', '2. high': 'High', '3. low': 'Low', '4. close': 'Close', '5. volume': 'Volume'})
# Calculate indicators
df = calculate_indicators(df)
# Create predictor
my_market_predictor = Pandas_Market_Predictor(df)
# Prepare data for linear regression
X, y = prepare_data(df)
# Split data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Train linear regression model
model = train_linear_regression(X_train, y_train)
# Make predictions on the test set
y_pred = model.predict(X_test)
# Display linear regression results
st.subheader("Linear Regression Results:")
st.write("Mean Squared Error:", mean_squared_error(y_test, y_pred))
st.write("R-squared Score:", r2_score(y_test, y_pred))
# Delete the DataFrame to release memory
del df
if __name__ == "__main__":
main()