|
import streamlit as st |
|
import requests |
|
import pandas as pd |
|
from datetime import datetime, timedelta |
|
|
|
|
|
API_KEY = "QR8F9B7T6R2SWTAT" |
|
|
|
def fetch_alpha_vantage_intraday(api_key, symbol): |
|
url = f'https://www.alphavantage.co/query?function=TIME_SERIES_INTRADAY&symbol={symbol}&interval=1min&apikey={api_key}' |
|
response = requests.get(url) |
|
alpha_vantage_data = response.json() |
|
return alpha_vantage_data |
|
|
|
def main(): |
|
st.title("Latest Traded Data (Last Hour)") |
|
|
|
|
|
symbol = st.text_input("Enter Stock Symbol (e.g., IBM):") |
|
|
|
if not symbol: |
|
st.warning("Please enter a valid stock symbol.") |
|
st.stop() |
|
|
|
|
|
api_key = API_KEY |
|
|
|
|
|
interval = 1 |
|
|
|
|
|
alpha_vantage_data = fetch_alpha_vantage_intraday(api_key, symbol) |
|
|
|
|
|
alpha_vantage_time_series = alpha_vantage_data.get(f'Time Series ({interval}min)', {}) |
|
df = pd.DataFrame(alpha_vantage_time_series).T |
|
df.index = pd.to_datetime(df.index) |
|
|
|
|
|
current_time = datetime.now() |
|
one_hour_ago = current_time - timedelta(hours=1) |
|
filtered_df = df[df.index >= one_hour_ago] |
|
|
|
|
|
st.subheader("Latest Traded Data (Last Hour):") |
|
st.write(filtered_df.tail(1)) |
|
|
|
if __name__ == "__main__": |
|
main() |