Geek7 commited on
Commit
5a94d26
·
verified ·
1 Parent(s): cc21455

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -23
app.py CHANGED
@@ -2,7 +2,6 @@ import streamlit as st
2
  import requests
3
  from Pandas_Market_Predictor import Pandas_Market_Predictor
4
  import pandas as pd
5
- import numpy as np
6
 
7
  # Hard-coded API key for demonstration purposes
8
  API_KEY = "QR8F9B7T6R2SWTAT"
@@ -13,19 +12,6 @@ def fetch_alpha_vantage_data(api_key):
13
  alpha_vantage_data = response.json()
14
  return alpha_vantage_data
15
 
16
- def calculate_ichimoku_cloud(data):
17
- short_window = 9
18
- long_window = 26
19
- span_b_window = 52
20
- displacement = 26
21
-
22
- data['tenkan_sen'] = (data['high'].rolling(window=short_window).max() + data['low'].rolling(window=short_window).min()) / 2
23
- data['kijun_sen'] = (data['high'].rolling(window=long_window).max() + data['low'].rolling(window=long_window).min()) / 2
24
- data['senkou_span_a'] = ((data['tenkan_sen'] + data['kijun_sen']) / 2).shift(displacement)
25
- data['senkou_span_b'] = ((data['high'].rolling(window=span_b_window).max() + data['low'].rolling(window=span_b_window).min()) / 2).shift(displacement)
26
-
27
- return data # Make sure to return the updated DataFrame
28
-
29
  def calculate_indicators(data):
30
  data = data.apply(pd.to_numeric, errors='coerce')
31
 
@@ -39,9 +25,6 @@ def calculate_indicators(data):
39
  data['12EMA'] = data['Close'].ewm(span=12).mean()
40
  data['MACD'] = data['12EMA'] - data['26EMA']
41
 
42
- # Calculate Ichimoku Cloud
43
- data = calculate_ichimoku_cloud(data)
44
-
45
  return data
46
 
47
  def main():
@@ -62,13 +45,11 @@ def main():
62
 
63
  my_market_predictor = Pandas_Market_Predictor(df)
64
 
65
- # Print data for each indicator before making predictions
66
- for indicator in ["THR", "LGR", "THd", "THM"]:
67
- indicator_data = my_market_predictor.get_indicator_data(indicator)
68
- print(f"Data for {indicator}:")
69
- print(indicator_data.head()) # Print the first few rows of data for the indicator
70
 
71
- indicators = ["Doji", "Inside", "MA5", "MA20", "MACD", "tenkan_sen", "kijun_sen", "senkou_span_a", "senkou_span_b"]
72
  trend = my_market_predictor.Trend_Detection(indicators, 10)
73
 
74
  st.subheader("Predicted Trend:")
 
2
  import requests
3
  from Pandas_Market_Predictor import Pandas_Market_Predictor
4
  import pandas as pd
 
5
 
6
  # Hard-coded API key for demonstration purposes
7
  API_KEY = "QR8F9B7T6R2SWTAT"
 
12
  alpha_vantage_data = response.json()
13
  return alpha_vantage_data
14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15
  def calculate_indicators(data):
16
  data = data.apply(pd.to_numeric, errors='coerce')
17
 
 
25
  data['12EMA'] = data['Close'].ewm(span=12).mean()
26
  data['MACD'] = data['12EMA'] - data['26EMA']
27
 
 
 
 
28
  return data
29
 
30
  def main():
 
45
 
46
  my_market_predictor = Pandas_Market_Predictor(df)
47
 
48
+ # Remove Ichimoku Cloud columns
49
+ ichimoku_columns = ["tenkan_sen", "kijun_sen", "senkou_span_a", "senkou_span_b"]
50
+ df = df.drop(columns=ichimoku_columns)
 
 
51
 
52
+ indicators = ["Doji", "Inside", "MA5", "MA20", "MACD"]
53
  trend = my_market_predictor.Trend_Detection(indicators, 10)
54
 
55
  st.subheader("Predicted Trend:")