Update app.py
Browse files
app.py
CHANGED
@@ -2,7 +2,6 @@ import streamlit as st
|
|
2 |
import requests
|
3 |
from Pandas_Market_Predictor import Pandas_Market_Predictor
|
4 |
import pandas as pd
|
5 |
-
import numpy as np
|
6 |
|
7 |
# Hard-coded API key for demonstration purposes
|
8 |
API_KEY = "QR8F9B7T6R2SWTAT"
|
@@ -13,19 +12,6 @@ def fetch_alpha_vantage_data(api_key):
|
|
13 |
alpha_vantage_data = response.json()
|
14 |
return alpha_vantage_data
|
15 |
|
16 |
-
def calculate_ichimoku_cloud(data):
|
17 |
-
short_window = 9
|
18 |
-
long_window = 26
|
19 |
-
span_b_window = 52
|
20 |
-
displacement = 26
|
21 |
-
|
22 |
-
data['tenkan_sen'] = (data['high'].rolling(window=short_window).max() + data['low'].rolling(window=short_window).min()) / 2
|
23 |
-
data['kijun_sen'] = (data['high'].rolling(window=long_window).max() + data['low'].rolling(window=long_window).min()) / 2
|
24 |
-
data['senkou_span_a'] = ((data['tenkan_sen'] + data['kijun_sen']) / 2).shift(displacement)
|
25 |
-
data['senkou_span_b'] = ((data['high'].rolling(window=span_b_window).max() + data['low'].rolling(window=span_b_window).min()) / 2).shift(displacement)
|
26 |
-
|
27 |
-
return data # Make sure to return the updated DataFrame
|
28 |
-
|
29 |
def calculate_indicators(data):
|
30 |
data = data.apply(pd.to_numeric, errors='coerce')
|
31 |
|
@@ -39,9 +25,6 @@ def calculate_indicators(data):
|
|
39 |
data['12EMA'] = data['Close'].ewm(span=12).mean()
|
40 |
data['MACD'] = data['12EMA'] - data['26EMA']
|
41 |
|
42 |
-
# Calculate Ichimoku Cloud
|
43 |
-
data = calculate_ichimoku_cloud(data)
|
44 |
-
|
45 |
return data
|
46 |
|
47 |
def main():
|
@@ -62,13 +45,11 @@ def main():
|
|
62 |
|
63 |
my_market_predictor = Pandas_Market_Predictor(df)
|
64 |
|
65 |
-
#
|
66 |
-
|
67 |
-
|
68 |
-
print(f"Data for {indicator}:")
|
69 |
-
print(indicator_data.head()) # Print the first few rows of data for the indicator
|
70 |
|
71 |
-
indicators = ["Doji", "Inside", "MA5", "MA20", "MACD"
|
72 |
trend = my_market_predictor.Trend_Detection(indicators, 10)
|
73 |
|
74 |
st.subheader("Predicted Trend:")
|
|
|
2 |
import requests
|
3 |
from Pandas_Market_Predictor import Pandas_Market_Predictor
|
4 |
import pandas as pd
|
|
|
5 |
|
6 |
# Hard-coded API key for demonstration purposes
|
7 |
API_KEY = "QR8F9B7T6R2SWTAT"
|
|
|
12 |
alpha_vantage_data = response.json()
|
13 |
return alpha_vantage_data
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
def calculate_indicators(data):
|
16 |
data = data.apply(pd.to_numeric, errors='coerce')
|
17 |
|
|
|
25 |
data['12EMA'] = data['Close'].ewm(span=12).mean()
|
26 |
data['MACD'] = data['12EMA'] - data['26EMA']
|
27 |
|
|
|
|
|
|
|
28 |
return data
|
29 |
|
30 |
def main():
|
|
|
45 |
|
46 |
my_market_predictor = Pandas_Market_Predictor(df)
|
47 |
|
48 |
+
# Remove Ichimoku Cloud columns
|
49 |
+
ichimoku_columns = ["tenkan_sen", "kijun_sen", "senkou_span_a", "senkou_span_b"]
|
50 |
+
df = df.drop(columns=ichimoku_columns)
|
|
|
|
|
51 |
|
52 |
+
indicators = ["Doji", "Inside", "MA5", "MA20", "MACD"]
|
53 |
trend = my_market_predictor.Trend_Detection(indicators, 10)
|
54 |
|
55 |
st.subheader("Predicted Trend:")
|