Geek7 commited on
Commit
5c413ad
·
verified ·
1 Parent(s): bae021b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +21 -49
app.py CHANGED
@@ -1,62 +1,34 @@
1
  import streamlit as st
2
- import requests
3
- from Pandas_Market_Predictor import Pandas_Market_Predictor
4
- import pandas as pd
5
-
6
- # Hard-coded API key for demonstration purposes
7
- API_KEY = "QR8F9B7T6R2SWTAT"
8
-
9
- def fetch_alpha_vantage_data(api_key):
10
- url = f'https://www.alphavantage.co/query?function=TIME_SERIES_INTRADAY&symbol=IBM&interval=5min&apikey={api_key}'
11
- response = requests.get(url)
12
- alpha_vantage_data = response.json()
13
- return alpha_vantage_data
14
-
15
- def calculate_indicators(data):
16
- # Convert all columns to numeric
17
- data = data.apply(pd.to_numeric, errors='coerce')
18
-
19
- # Example: Simple condition for doji and inside
20
- data['Doji'] = abs(data['Close'] - data['open']) <= 0.01 * (data['high'] - data['Low'])
21
- data['Inside'] = (data['high'] < data['high'].shift(1)) & (data['Low'] > data['Low'].shift(1))
22
- return data
23
 
24
  def main():
25
- st.title("Stock Trend Predictor")
26
-
27
- # Use the hard-coded API key
28
- api_key = API_KEY
29
-
30
- # Fetch Alpha Vantage data
31
- alpha_vantage_data = fetch_alpha_vantage_data(api_key)
32
 
33
- # Extract relevant data from Alpha Vantage response
34
- alpha_vantage_time_series = alpha_vantage_data.get('Time Series (5min)', {})
35
- df = pd.DataFrame(alpha_vantage_time_series).T
36
- df.index = pd.to_datetime(df.index)
37
- df = df.dropna(axis=0)
38
 
39
- # Rename columns
40
- df = df.rename(columns={'1. open': 'open', '2. high': 'high', '3. low': 'Low', '4. close': 'Close', '5. volume': 'volume'})
41
 
42
- # Calculate indicators
43
- df = calculate_indicators(df)
 
44
 
45
- # Create predictor
46
- my_market_predictor = Pandas_Market_Predictor(df)
 
47
 
48
- # Predict Trend
49
- indicators = ["Doji", "Inside"]
50
- trend = my_market_predictor.Trend_Detection(indicators, 10)
51
 
52
- # Display results
53
- st.subheader("Predicted Trend:")
54
- st.write("Buy Trend :", trend['BUY'])
55
- st.write("Sell Trend :", trend['SELL'])
56
- st.write(f"Standard Deviation Percentage: {my_market_predictor.PERCENT_STD}%")
57
 
58
- # Delete the DataFrame to release memory
59
- del df
 
60
 
61
  if __name__ == "__main__":
62
  main()
 
1
  import streamlit as st
2
+ from thronetrader import StrategicSignals
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
 
4
  def main():
5
+ st.title("Strategic Trading Signals")
 
 
 
 
 
 
6
 
7
+ # Input for stock symbol
8
+ symbol = st.text_input("Enter stock symbol (e.g., AAPL):", "AAPL")
 
 
 
9
 
10
+ # Display strategic trading signals
11
+ strategic_signals = StrategicSignals(symbol=symbol)
12
 
13
+ st.subheader("Bollinger Bands Signals:")
14
+ bollinger_bands_signals = strategic_signals.get_bollinger_bands_signals()
15
+ st.write(bollinger_bands_signals)
16
 
17
+ st.subheader("Breakout Signals:")
18
+ breakout_signals = strategic_signals.get_breakout_signals()
19
+ st.write(breakout_signals)
20
 
21
+ st.subheader("Crossover Signals:")
22
+ crossover_signals = strategic_signals.get_crossover_signals()
23
+ st.write(crossover_signals)
24
 
25
+ st.subheader("MACD Signals:")
26
+ macd_signals = strategic_signals.get_macd_signals()
27
+ st.write(macd_signals)
 
 
28
 
29
+ st.subheader("RSI Signals:")
30
+ rsi_signals = strategic_signals.get_rsi_signals()
31
+ st.write(rsi_signals)
32
 
33
  if __name__ == "__main__":
34
  main()