Geek7 commited on
Commit
96823a2
·
verified ·
1 Parent(s): 8b59267

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +9 -76
app.py CHANGED
@@ -1,79 +1,12 @@
1
- import streamlit as st
2
- import requests
3
- from Pandas_Market_Predictor import Pandas_Market_Predictor
4
- import pandas as pd
5
- from sklearn.model_selection import train_test_split
6
- from sklearn.linear_model import LinearRegression
7
- from sklearn.metrics import mean_squared_error, r2_score
8
 
9
- # Hard-coded API key for demonstration purposes
10
- API_KEY = "QR8F9B7T6R2SWTAT"
11
 
12
- def fetch_alpha_vantage_data(api_key):
13
- url = f'https://www.alphavantage.co/query?function=TIME_SERIES_INTRADAY&symbol=IBM&interval=5min&apikey={api_key}'
14
- response = requests.get(url)
15
- alpha_vantage_data = response.json()
16
- return alpha_vantage_data
17
 
18
- def calculate_indicators(data):
19
- data = data.apply(pd.to_numeric, errors='coerce')
20
- data['Doji'] = abs(data['Close'] - data['Open']) <= 0.01 * (data['High'] - data['Low'])
21
- data['Inside'] = (data['High'] < data['High'].shift(1)) & (data['Low'] > data['Low'].shift(1))
22
- return data
23
-
24
- def prepare_data(data, target_column='Close'):
25
- X = data.drop(target_column, axis=1)
26
- y = data[target_column]
27
- return X, y
28
-
29
- def train_linear_regression(X_train, y_train):
30
- model = LinearRegression()
31
- model.fit(X_train, y_train)
32
- return model
33
-
34
- def main():
35
- st.title("Stock Price Predictor")
36
-
37
- # Use the hard-coded API key
38
- api_key = API_KEY
39
-
40
- # Fetch Alpha Vantage data
41
- alpha_vantage_data = fetch_alpha_vantage_data(api_key)
42
-
43
- # Extract relevant data from Alpha Vantage response
44
- alpha_vantage_time_series = alpha_vantage_data.get('Time Series (5min)', {})
45
- df = pd.DataFrame(alpha_vantage_time_series).T
46
- df.index = pd.to_datetime(df.index)
47
- df = df.dropna(axis=0)
48
-
49
- # Rename columns
50
- df = df.rename(columns={'1. open': 'Open', '2. high': 'High', '3. low': 'Low', '4. close': 'Close', '5. volume': 'Volume'})
51
-
52
- # Calculate indicators
53
- df = calculate_indicators(df)
54
-
55
- # Create predictor
56
- my_market_predictor = Pandas_Market_Predictor(df)
57
-
58
- # Prepare data for linear regression
59
- X, y = prepare_data(df)
60
-
61
- # Split data into training and testing sets
62
- X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
63
-
64
- # Train linear regression model
65
- model = train_linear_regression(X_train, y_train)
66
-
67
- # Make predictions on the test set
68
- y_pred = model.predict(X_test)
69
-
70
- # Display linear regression results
71
- st.subheader("Linear Regression Results:")
72
- st.write("Mean Squared Error:", mean_squared_error(y_test, y_pred))
73
- st.write("R-squared Score:", r2_score(y_test, y_pred))
74
-
75
- # Delete the DataFrame to release memory
76
- del df
77
-
78
- if __name__ == "__main__":
79
- main()
 
1
+ from thronetrader import RealTimeSignals
 
 
 
 
 
 
2
 
3
+ realtime_signals = RealTimeSignals(symbol="AAPL")
 
4
 
5
+ print(realtime_signals.get_financial_signals())
6
+ print(realtime_signals.get_insider_signals())
 
 
 
7
 
8
+ series1, series2 = realtime_signals.get_trading_volume()
9
+ print(series1.name)
10
+ print(series1.to_dict())
11
+ print(series2.name)
12
+ print(series2.to_dict())