Update app.py
Browse files
app.py
CHANGED
@@ -1,79 +1,12 @@
|
|
1 |
-
|
2 |
-
import requests
|
3 |
-
from Pandas_Market_Predictor import Pandas_Market_Predictor
|
4 |
-
import pandas as pd
|
5 |
-
from sklearn.model_selection import train_test_split
|
6 |
-
from sklearn.linear_model import LinearRegression
|
7 |
-
from sklearn.metrics import mean_squared_error, r2_score
|
8 |
|
9 |
-
|
10 |
-
API_KEY = "QR8F9B7T6R2SWTAT"
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
response = requests.get(url)
|
15 |
-
alpha_vantage_data = response.json()
|
16 |
-
return alpha_vantage_data
|
17 |
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
def prepare_data(data, target_column='Close'):
|
25 |
-
X = data.drop(target_column, axis=1)
|
26 |
-
y = data[target_column]
|
27 |
-
return X, y
|
28 |
-
|
29 |
-
def train_linear_regression(X_train, y_train):
|
30 |
-
model = LinearRegression()
|
31 |
-
model.fit(X_train, y_train)
|
32 |
-
return model
|
33 |
-
|
34 |
-
def main():
|
35 |
-
st.title("Stock Price Predictor")
|
36 |
-
|
37 |
-
# Use the hard-coded API key
|
38 |
-
api_key = API_KEY
|
39 |
-
|
40 |
-
# Fetch Alpha Vantage data
|
41 |
-
alpha_vantage_data = fetch_alpha_vantage_data(api_key)
|
42 |
-
|
43 |
-
# Extract relevant data from Alpha Vantage response
|
44 |
-
alpha_vantage_time_series = alpha_vantage_data.get('Time Series (5min)', {})
|
45 |
-
df = pd.DataFrame(alpha_vantage_time_series).T
|
46 |
-
df.index = pd.to_datetime(df.index)
|
47 |
-
df = df.dropna(axis=0)
|
48 |
-
|
49 |
-
# Rename columns
|
50 |
-
df = df.rename(columns={'1. open': 'Open', '2. high': 'High', '3. low': 'Low', '4. close': 'Close', '5. volume': 'Volume'})
|
51 |
-
|
52 |
-
# Calculate indicators
|
53 |
-
df = calculate_indicators(df)
|
54 |
-
|
55 |
-
# Create predictor
|
56 |
-
my_market_predictor = Pandas_Market_Predictor(df)
|
57 |
-
|
58 |
-
# Prepare data for linear regression
|
59 |
-
X, y = prepare_data(df)
|
60 |
-
|
61 |
-
# Split data into training and testing sets
|
62 |
-
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
63 |
-
|
64 |
-
# Train linear regression model
|
65 |
-
model = train_linear_regression(X_train, y_train)
|
66 |
-
|
67 |
-
# Make predictions on the test set
|
68 |
-
y_pred = model.predict(X_test)
|
69 |
-
|
70 |
-
# Display linear regression results
|
71 |
-
st.subheader("Linear Regression Results:")
|
72 |
-
st.write("Mean Squared Error:", mean_squared_error(y_test, y_pred))
|
73 |
-
st.write("R-squared Score:", r2_score(y_test, y_pred))
|
74 |
-
|
75 |
-
# Delete the DataFrame to release memory
|
76 |
-
del df
|
77 |
-
|
78 |
-
if __name__ == "__main__":
|
79 |
-
main()
|
|
|
1 |
+
from thronetrader import RealTimeSignals
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
+
realtime_signals = RealTimeSignals(symbol="AAPL")
|
|
|
4 |
|
5 |
+
print(realtime_signals.get_financial_signals())
|
6 |
+
print(realtime_signals.get_insider_signals())
|
|
|
|
|
|
|
7 |
|
8 |
+
series1, series2 = realtime_signals.get_trading_volume()
|
9 |
+
print(series1.name)
|
10 |
+
print(series1.to_dict())
|
11 |
+
print(series2.name)
|
12 |
+
print(series2.to_dict())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|