Geek7 commited on
Commit
e03d6e8
·
verified ·
1 Parent(s): 69a18df

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -82
app.py CHANGED
@@ -42,85 +42,3 @@ def main():
42
 
43
  if __name__ == "__main__":
44
  main()
45
-
46
-
47
-
48
-
49
- # Hard-coded API key for demonstration purposes
50
- API_KEY = "QR8F9B7T6R2SWTAT"
51
-
52
- def fetch_alpha_vantage_data(api_key, symbol):
53
-
54
- url = f'https://www.alphavantage.co/query?function=TIME_SERIES_INTRADAY&symbol={symbol}&interval=5min&apikey={api_key}'
55
- response = requests.get(url)
56
- alpha_vantage_data = response.json()
57
- return alpha_vantage_data
58
-
59
- def calculate_indicators(data):
60
- # Convert all columns to numeric
61
- data = data.apply(pd.to_numeric, errors='coerce')
62
-
63
- # Example: Simple condition for doji and inside
64
- data['Doji'] = abs(data['Close'] - data['Open']) <= 0.01 * (data['High'] - data['Low'])
65
- data['Inside'] = (data['High'] < data['High'].shift(1)) & (data['Low'] > data['Low'].shift(1))
66
- return data
67
-
68
- def display_signals(signal_type, signals):
69
- st.subheader(f"{signal_type} Signals:")
70
- st.write(signals)
71
-
72
- def main():
73
- st.title("Stock Trend Predictor")
74
-
75
- # Input for stock symbol
76
- symbol = st.text_input("Enter stock symbol (e.g., AAPL):", "AAPL")
77
-
78
- # Fetch Alpha Vantage data
79
- alpha_vantage_data = fetch_alpha_vantage_data(API_KEY, symbol)
80
-
81
- # Extract relevant data from Alpha Vantage response
82
- alpha_vantage_time_series = alpha_vantage_data.get('Time Series (5min)', {})
83
- df = pd.DataFrame(alpha_vantage_time_series).T
84
- df.index = pd.to_datetime(df.index)
85
- df = df.dropna(axis=0)
86
-
87
- # Rename columns
88
- df = df.rename(columns={'1. open': 'Open', '2. high': 'High', '3. low': 'Low', '4. close': 'Close', '5. volume': 'Volume'})
89
-
90
- # Calculate indicators
91
- df = calculate_indicators(df)
92
-
93
- # Display stock trading signals
94
- strategic_signals = StrategicSignals(symbol=symbol)
95
-
96
- # Display loading message during processing
97
- with st.spinner("Predicting signals using Strategic Indicators..."):
98
- # Display signals
99
- st.subheader(":orange[Strategic Indicators Trend Prediction]")
100
- display_signals("Bollinger Bands", strategic_signals.get_bollinger_bands_signals())
101
- display_signals("Breakout", strategic_signals.get_breakout_signals())
102
- display_signals("Crossover", strategic_signals.get_crossover_signals())
103
- display_signals("MACD", strategic_signals.get_macd_signals())
104
- display_signals("RSI", strategic_signals.get_rsi_signals())
105
-
106
- # Create predictor
107
- my_market_predictor = Pandas_Market_Predictor(df)
108
-
109
- # Predict Trend
110
- indicators = ["Doji", "Inside"]
111
-
112
- # Display loading message during prediction
113
- with st.spinner("Predicting trend using AI ...."):
114
- # Predict trend
115
- trend = my_market_predictor.Trend_Detection(indicators, 10)
116
-
117
- # Display results
118
- st.subheader(":orange[AI Trend Prediction]")
119
- st.write("Buy Trend :", trend['BUY'])
120
- st.write("Sell Trend :", trend['SELL'])
121
-
122
- # Delete the DataFrame to release memory
123
- del df
124
-
125
- if __name__ == "__main__":
126
- main()
 
42
 
43
  if __name__ == "__main__":
44
  main()