Geek7 commited on
Commit
f6326dc
·
verified ·
1 Parent(s): 3c1e863

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +19 -36
app.py CHANGED
@@ -44,19 +44,16 @@ if __name__ == "__main__":
44
  main()
45
 
46
 
 
 
47
  # Hard-coded API key for demonstration purposes
48
  API_KEY = "QR8F9B7T6R2SWTAT"
49
 
50
- def fetch_alpha_vantage_data(api_key, symbol, progress_bar):
 
51
  url = f'https://www.alphavantage.co/query?function=TIME_SERIES_INTRADAY&symbol={symbol}&interval=5min&apikey={api_key}'
52
  response = requests.get(url)
53
  alpha_vantage_data = response.json()
54
-
55
- # Simulate progress with a fake sleep
56
- for percent_complete in range(0, 101, 10):
57
- progress_bar.progress(percent_complete)
58
- st.experimental_rerun()
59
-
60
  return alpha_vantage_data
61
 
62
  def calculate_indicators(data):
@@ -79,8 +76,7 @@ def main():
79
  symbol = st.text_input("Enter stock symbol (e.g., AAPL):", "AAPL")
80
 
81
  # Fetch Alpha Vantage data
82
- progress_bar_fetch_data = st.progress(0)
83
- alpha_vantage_data = fetch_alpha_vantage_data(API_KEY, symbol, progress_bar_fetch_data)
84
 
85
  # Extract relevant data from Alpha Vantage response
86
  alpha_vantage_time_series = alpha_vantage_data.get('Time Series (5min)', {})
@@ -91,50 +87,37 @@ def main():
91
  # Rename columns
92
  df = df.rename(columns={'1. open': 'Open', '2. high': 'High', '3. low': 'Low', '4. close': 'Close', '5. volume': 'Volume'})
93
 
94
- # Simulate progress with a fake sleep
95
- for percent_complete in range(0, 101, 10):
96
- progress_bar_process_data = st.progress(percent_complete)
97
- st.experimental_rerun()
98
-
99
  # Calculate indicators
100
  df = calculate_indicators(df)
101
 
102
  # Display stock trading signals
103
  strategic_signals = StrategicSignals(symbol=symbol)
104
 
105
- # Simulate progress with a fake sleep
106
- for percent_complete in range(0, 101, 10):
107
- progress_bar_display_signals = st.progress(percent_complete)
108
- st.experimental_rerun()
109
-
110
- display_signals("Bollinger Bands", strategic_signals.get_bollinger_bands_signals())
111
- display_signals("Breakout", strategic_signals.get_breakout_signals())
112
- display_signals("Crossover", strategic_signals.get_crossover_signals())
113
- display_signals("MACD", strategic_signals.get_macd_signals())
114
- display_signals("RSI", strategic_signals.get_rsi_signals())
115
-
116
- # Simulate progress with a fake sleep
117
- for percent_complete in range(0, 101, 10):
118
- progress_bar_predict_trend = st.progress(percent_complete)
119
- st.experimental_rerun()
120
 
121
  # Create predictor
122
  my_market_predictor = Pandas_Market_Predictor(df)
123
 
124
  # Predict Trend
125
  indicators = ["Doji", "Inside"]
126
- trend = my_market_predictor.Trend_Detection(indicators, 10)
127
 
128
- # Display trend predictions
 
 
 
 
 
129
  st.subheader("Predicted Trend:")
130
  st.write("Buy Trend :", trend['BUY'])
131
  st.write("Sell Trend :", trend['SELL'])
132
 
133
- # Simulate progress with a fake sleep
134
- for percent_complete in range(0, 101, 10):
135
- progress_bar_complete = st.progress(percent_complete)
136
- st.experimental_rerun()
137
-
138
  # Delete the DataFrame to release memory
139
  del df
140
 
 
44
  main()
45
 
46
 
47
+
48
+
49
  # Hard-coded API key for demonstration purposes
50
  API_KEY = "QR8F9B7T6R2SWTAT"
51
 
52
+ def fetch_alpha_vantage_data(api_key, symbol):
53
+ st.write("Fetching Alpha Vantage data...")
54
  url = f'https://www.alphavantage.co/query?function=TIME_SERIES_INTRADAY&symbol={symbol}&interval=5min&apikey={api_key}'
55
  response = requests.get(url)
56
  alpha_vantage_data = response.json()
 
 
 
 
 
 
57
  return alpha_vantage_data
58
 
59
  def calculate_indicators(data):
 
76
  symbol = st.text_input("Enter stock symbol (e.g., AAPL):", "AAPL")
77
 
78
  # Fetch Alpha Vantage data
79
+ alpha_vantage_data = fetch_alpha_vantage_data(API_KEY, symbol)
 
80
 
81
  # Extract relevant data from Alpha Vantage response
82
  alpha_vantage_time_series = alpha_vantage_data.get('Time Series (5min)', {})
 
87
  # Rename columns
88
  df = df.rename(columns={'1. open': 'Open', '2. high': 'High', '3. low': 'Low', '4. close': 'Close', '5. volume': 'Volume'})
89
 
 
 
 
 
 
90
  # Calculate indicators
91
  df = calculate_indicators(df)
92
 
93
  # Display stock trading signals
94
  strategic_signals = StrategicSignals(symbol=symbol)
95
 
96
+ # Display loading message during processing
97
+ with st.spinner("Processing signals..."):
98
+ # Display signals
99
+ display_signals("Bollinger Bands", strategic_signals.get_bollinger_bands_signals())
100
+ display_signals("Breakout", strategic_signals.get_breakout_signals())
101
+ display_signals("Crossover", strategic_signals.get_crossover_signals())
102
+ display_signals("MACD", strategic_signals.get_macd_signals())
103
+ display_signals("RSI", strategic_signals.get_rsi_signals())
 
 
 
 
 
 
 
104
 
105
  # Create predictor
106
  my_market_predictor = Pandas_Market_Predictor(df)
107
 
108
  # Predict Trend
109
  indicators = ["Doji", "Inside"]
 
110
 
111
+ # Display loading message during prediction
112
+ with st.spinner("Predicting trend..."):
113
+ # Predict trend
114
+ trend = my_market_predictor.Trend_Detection(indicators, 10)
115
+
116
+ # Display results
117
  st.subheader("Predicted Trend:")
118
  st.write("Buy Trend :", trend['BUY'])
119
  st.write("Sell Trend :", trend['SELL'])
120
 
 
 
 
 
 
121
  # Delete the DataFrame to release memory
122
  del df
123