Spaces:
Runtime error
Runtime error
File size: 6,586 Bytes
d101062 9c5d561 327dc47 6b4e294 d101062 e05e986 d101062 8bd5dc7 327dc47 e05e986 8bd5dc7 6b4e294 e05e986 ce193d2 e05e986 d101062 e05e986 8bd5dc7 d101062 8bd5dc7 e05e986 d101062 e05e986 8bd5dc7 ce193d2 e05e986 d101062 e05e986 d101062 8bd5dc7 e05e986 8bd5dc7 e05e986 327dc47 9c5d561 d101062 e05e986 d101062 e05e986 d101062 9c5d561 d101062 e05e986 d101062 327dc47 e05e986 d101062 e05e986 d101062 e05e986 9c5d561 e05e986 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
import spaces
import gradio as gr
import re
from PIL import Image
import os
# Set memory optimization flags
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:128"
import numpy as np
import torch
from diffusers import FluxImg2ImgPipeline
# Global pipe variable for lazy loading
pipe = None
# Use float16 instead of bfloat16 for T4 compatibility
dtype = torch.float16
device = "cuda" if torch.cuda.is_available() else "cpu"
def get_pipe():
global pipe
if pipe is None:
pipe = FluxImg2ImgPipeline.from_pretrained(
"black-forest-labs/FLUX.1-schnell",
torch_dtype=torch.float16,
variant="fp16"
).to(device)
return pipe
def sanitize_prompt(prompt):
# Allow only alphanumeric characters, spaces, and basic punctuation
allowed_chars = re.compile(r"[^a-zA-Z0-9\s.,!?-]")
sanitized_prompt = allowed_chars.sub("", prompt)
return sanitized_prompt
def convert_to_fit_size(original_width_and_height, maximum_size = 1024):
width, height = original_width_and_height
if width <= maximum_size and height <= maximum_size:
return width, height
if width > height:
scaling_factor = maximum_size / width
else:
scaling_factor = maximum_size / height
new_width = int(width * scaling_factor)
new_height = int(height * scaling_factor)
return new_width, new_height
def adjust_to_multiple_of_32(width: int, height: int):
width = width - (width % 32)
height = height - (height % 32)
return width, height
def resize_image(image: Image.Image, max_dim: int = 512) -> Image.Image:
"""Resizes image to fit within max_dim while preserving aspect ratio"""
w, h = image.size
ratio = min(max_dim / w, max_dim / h)
if ratio < 1.0:
new_w = int(w * ratio)
new_h = int(h * ratio)
image = image.resize((new_w, new_h), Image.LANCZOS)
return image
@spaces.GPU(duration=120)
def process_images(image, prompt="a girl", strength=0.75, seed=0, inference_step=4, progress=gr.Progress(track_tqdm=True)):
progress(0, desc="Starting")
# Get the model using lazy loading
model = get_pipe()
def process_img2img(image, prompt="a person", strength=0.75, seed=0, num_inference_steps=4):
if image is None:
print("empty input image returned")
return None
# Resize image to reduce memory usage
image = resize_image(image, max_dim=512)
generator = torch.Generator(device).manual_seed(seed)
fit_width, fit_height = convert_to_fit_size(image.size, maximum_size=512)
width, height = adjust_to_multiple_of_32(fit_width, fit_height)
image = image.resize((width, height), Image.LANCZOS)
# Use autocast for better memory efficiency
with torch.cuda.amp.autocast(dtype=torch.float16):
with torch.no_grad():
output = model(
prompt=prompt,
image=image,
generator=generator,
strength=strength,
width=width,
height=height,
guidance_scale=0,
num_inference_steps=num_inference_steps,
max_sequence_length=256
)
pil_image = output.images[0]
new_width, new_height = pil_image.size
if (new_width != fit_width) or (new_height != fit_height):
resized_image = pil_image.resize((fit_width, fit_height), Image.LANCZOS)
return resized_image
return pil_image
output = process_img2img(image, prompt, strength, seed, inference_step)
return output
def read_file(path: str) -> str:
with open(path, 'r', encoding='utf-8') as f:
content = f.read()
return content
css="""
#col-left {
margin: 0 auto;
max-width: 640px;
}
#col-right {
margin: 0 auto;
max-width: 640px;
}
.grid-container {
display: flex;
align-items: center;
justify-content: center;
gap:10px
}
.image {
width: 128px;
height: 128px;
object-fit: cover;
}
.text {
font-size: 16px;
}
"""
with gr.Blocks(css=css, elem_id="demo-container") as demo:
with gr.Column():
gr.HTML(read_file("demo_header.html"))
gr.HTML(read_file("demo_tools.html"))
with gr.Row():
with gr.Column():
image = gr.Image(height=800,sources=['upload','clipboard'],image_mode='RGB', elem_id="image_upload", type="pil", label="Upload")
with gr.Row(elem_id="prompt-container", equal_height=False):
with gr.Row():
prompt = gr.Textbox(label="Prompt",value="a women",placeholder="Your prompt (what you want in place of what is erased)", elem_id="prompt")
btn = gr.Button("Img2Img", elem_id="run_button",variant="primary")
with gr.Accordion(label="Advanced Settings", open=False):
with gr.Row( equal_height=True):
strength = gr.Number(value=0.75, minimum=0, maximum=0.75, step=0.01, label="strength")
seed = gr.Number(value=100, minimum=0, step=1, label="seed")
inference_step = gr.Number(value=4, minimum=1, step=4, label="inference_step")
id_input=gr.Text(label="Name", visible=False)
with gr.Column():
image_out = gr.Image(height=800,sources=[],label="Output", elem_id="output-img",format="jpg")
gr.Examples(
examples=[
["examples/draw_input.jpg", "examples/draw_output.jpg","a women ,eyes closed,mouth opened"],
["examples/draw-gimp_input.jpg", "examples/draw-gimp_output.jpg","a women ,eyes closed,mouth opened"],
["examples/gimp_input.jpg", "examples/gimp_output.jpg","a women ,hand on neck"],
["examples/inpaint_input.jpg", "examples/inpaint_output.jpg","a women ,hand on neck"]
]
,
inputs=[image,image_out,prompt],
)
gr.HTML(
gr.HTML(read_file("demo_footer.html"))
)
gr.on(
triggers=[btn.click, prompt.submit],
fn = process_images,
inputs = [image,prompt,strength,seed,inference_step],
outputs = [image_out]
)
if __name__ == "__main__":
demo.launch(share=True, show_error=True) |