Spaces:
Runtime error
Runtime error
Update flux1_img2img.py
Browse files- flux1_img2img.py +47 -151
flux1_img2img.py
CHANGED
@@ -1,24 +1,18 @@
|
|
1 |
import os
|
2 |
import torch
|
3 |
-
|
4 |
from PIL import Image
|
5 |
-
|
6 |
import spaces
|
7 |
-
from diffusers import FluxImg2ImgPipeline
|
8 |
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
|
|
13 |
|
14 |
-
###############################################################################
|
15 |
-
# Helper: Resize the input image
|
16 |
-
###############################################################################
|
17 |
def resize_image(image: Image.Image, max_dim: int = 512) -> Image.Image:
|
18 |
-
"""
|
19 |
-
Resizes 'image' so that its largest dimension <= max_dim,
|
20 |
-
preserving aspect ratio. This helps reduce VRAM usage on T4.
|
21 |
-
"""
|
22 |
w, h = image.size
|
23 |
ratio = min(max_dim / w, max_dim / h)
|
24 |
if ratio < 1.0:
|
@@ -27,152 +21,54 @@ def resize_image(image: Image.Image, max_dim: int = 512) -> Image.Image:
|
|
27 |
image = image.resize((new_w, new_h), Image.LANCZOS)
|
28 |
return image
|
29 |
|
30 |
-
|
31 |
-
# Lazy-load function for FLUX.1-schnell pipeline in float16
|
32 |
-
###############################################################################
|
33 |
-
def load_flux_pipeline():
|
34 |
global pipe
|
35 |
-
if pipe is
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
"black-forest-labs/FLUX.1-schnell",
|
43 |
-
torch_dtype=torch.float16, # crucial for T4
|
44 |
-
low_cpu_mem_usage=True
|
45 |
-
)
|
46 |
-
|
47 |
-
# 2) Move to GPU
|
48 |
-
pipe_local.to("cuda")
|
49 |
|
50 |
-
# 3) Memory Efficient Attention (xFormers)
|
51 |
-
try:
|
52 |
-
pipe_local.enable_xformers_memory_efficient_attention()
|
53 |
-
print("xFormers memory efficient attention enabled.")
|
54 |
-
except Exception as e:
|
55 |
-
print("Could not enable xFormers:", e)
|
56 |
-
|
57 |
-
# 4) CPU offload (keeps only active layers on GPU)
|
58 |
-
try:
|
59 |
-
pipe_local.enable_model_cpu_offload()
|
60 |
-
print("Model CPU offload enabled.")
|
61 |
-
except Exception as e:
|
62 |
-
print("Could not enable model_cpu_offload:", e)
|
63 |
-
|
64 |
-
# 5) VAE slicing reduces peak memory usage
|
65 |
-
pipe_local.enable_vae_slicing()
|
66 |
-
|
67 |
-
# Save to global
|
68 |
-
pipe_local.max_sequence_length = 256
|
69 |
-
pipe = pipe_local
|
70 |
-
print("Flux pipeline loaded successfully.")
|
71 |
-
|
72 |
-
###############################################################################
|
73 |
-
# Main inference function
|
74 |
-
###############################################################################
|
75 |
@spaces.GPU
|
76 |
-
def process_image(
|
77 |
-
image
|
78 |
-
mask_image: Image.Image,
|
79 |
-
prompt="A person",
|
80 |
-
strength=0.75,
|
81 |
-
seed=0,
|
82 |
-
num_inference_steps=4,
|
83 |
-
progress=gr.Progress(track_tqdm=True)
|
84 |
-
):
|
85 |
-
"""
|
86 |
-
Loads the pipeline if needed, resizes the input image,
|
87 |
-
then runs Flux Img2Img with minimal VRAM usage strategies.
|
88 |
-
"""
|
89 |
-
progress(0, desc="Preparing model")
|
90 |
-
|
91 |
-
# 1) Ensure pipeline is loaded
|
92 |
-
load_flux_pipeline()
|
93 |
-
|
94 |
-
progress(20, desc="Resizing input image")
|
95 |
if image is None:
|
96 |
-
print("
|
97 |
return None
|
98 |
-
|
99 |
-
#
|
100 |
image = resize_image(image, max_dim=512)
|
|
|
|
|
|
|
101 |
|
102 |
-
|
103 |
generator = torch.Generator("cuda").manual_seed(seed)
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
###############################################################################
|
121 |
-
# BUILD THE GRADIO UI
|
122 |
-
###############################################################################
|
123 |
-
css = """
|
124 |
-
#col-left {
|
125 |
-
margin: 0 auto;
|
126 |
-
max-width: 640px;
|
127 |
-
}
|
128 |
-
#col-right {
|
129 |
-
margin: 0 auto;
|
130 |
-
max-width: 640px;
|
131 |
-
}
|
132 |
-
"""
|
133 |
-
|
134 |
-
with gr.Blocks(css=css) as demo:
|
135 |
-
gr.Markdown("## FLUX Img2Img — Memory-Optimized for T4\n"
|
136 |
-
"Using float16, CPU offload, xFormers, and image resizing to reduce VRAM usage.")
|
137 |
-
|
138 |
-
with gr.Row():
|
139 |
-
with gr.Column():
|
140 |
-
# The main input image
|
141 |
-
input_image = gr.Image(
|
142 |
-
label="Input Image (Img2Img)",
|
143 |
-
type="pil",
|
144 |
-
image_mode="RGB",
|
145 |
-
height=512
|
146 |
)
|
147 |
|
148 |
-
|
149 |
-
|
150 |
-
label="Mask (unused)",
|
151 |
-
type="pil",
|
152 |
-
image_mode="RGB",
|
153 |
-
height=200
|
154 |
-
)
|
155 |
-
|
156 |
-
prompt = gr.Textbox(label="Prompt", value="A person")
|
157 |
-
strength_slider = gr.Slider(0.0, 1.0, value=0.75, step=0.05, label="Strength")
|
158 |
-
seed_box = gr.Number(value=0, label="Seed", precision=0)
|
159 |
-
steps_box = gr.Slider(1, 50, value=4, step=1, label="Inference Steps")
|
160 |
-
|
161 |
-
run_button = gr.Button("Generate")
|
162 |
-
|
163 |
-
with gr.Column():
|
164 |
-
result_image = gr.Image(
|
165 |
-
label="Output",
|
166 |
-
type="pil",
|
167 |
-
height=512
|
168 |
-
)
|
169 |
-
|
170 |
-
# Tie the button to our inference function
|
171 |
-
run_button.click(
|
172 |
-
fn=process_image,
|
173 |
-
inputs=[input_image, mask_image, prompt, strength_slider, seed_box, steps_box],
|
174 |
-
outputs=result_image
|
175 |
-
)
|
176 |
|
177 |
if __name__ == "__main__":
|
178 |
-
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
import torch
|
3 |
+
from diffusers import FluxImg2ImgPipeline
|
4 |
from PIL import Image
|
5 |
+
import sys
|
6 |
import spaces
|
|
|
7 |
|
8 |
+
# Set memory optimization flags
|
9 |
+
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:128"
|
10 |
+
|
11 |
+
# Global pipe variable for lazy loading
|
12 |
+
pipe = None
|
13 |
|
|
|
|
|
|
|
14 |
def resize_image(image: Image.Image, max_dim: int = 512) -> Image.Image:
|
15 |
+
"""Resizes image to fit within max_dim while preserving aspect ratio"""
|
|
|
|
|
|
|
16 |
w, h = image.size
|
17 |
ratio = min(max_dim / w, max_dim / h)
|
18 |
if ratio < 1.0:
|
|
|
21 |
image = image.resize((new_w, new_h), Image.LANCZOS)
|
22 |
return image
|
23 |
|
24 |
+
def get_pipe(model_id="black-forest-labs/FLUX.1-schnell"):
|
|
|
|
|
|
|
25 |
global pipe
|
26 |
+
if pipe is None:
|
27 |
+
pipe = FluxImg2ImgPipeline.from_pretrained(
|
28 |
+
model_id,
|
29 |
+
torch_dtype=torch.float16,
|
30 |
+
variant="fp16"
|
31 |
+
).to("cuda")
|
32 |
+
return pipe
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
@spaces.GPU
|
35 |
+
def process_image(image, mask_image, prompt="a person", model_id="black-forest-labs/FLUX.1-schnell", strength=0.75, seed=0, num_inference_steps=4):
|
36 |
+
print("start process image process_image")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
if image is None:
|
38 |
+
print("empty input image returned")
|
39 |
return None
|
40 |
+
|
41 |
+
# Resize image to reduce memory usage
|
42 |
image = resize_image(image, max_dim=512)
|
43 |
+
|
44 |
+
# Get model using lazy loading
|
45 |
+
model = get_pipe(model_id)
|
46 |
|
47 |
+
generators = []
|
48 |
generator = torch.Generator("cuda").manual_seed(seed)
|
49 |
+
generators.append(generator)
|
50 |
+
|
51 |
+
# Use autocast for better memory efficiency
|
52 |
+
with torch.cuda.amp.autocast(dtype=torch.float16):
|
53 |
+
with torch.no_grad():
|
54 |
+
# more parameter see https://huggingface.co/docs/diffusers/api/pipelines/flux#diffusers.FluxInpaintPipeline
|
55 |
+
print(prompt)
|
56 |
+
output = model(
|
57 |
+
prompt=prompt,
|
58 |
+
image=image,
|
59 |
+
generator=generator,
|
60 |
+
strength=strength,
|
61 |
+
guidance_scale=0,
|
62 |
+
num_inference_steps=num_inference_steps,
|
63 |
+
max_sequence_length=256
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
)
|
65 |
|
66 |
+
# TODO support mask
|
67 |
+
return output.images[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
|
69 |
if __name__ == "__main__":
|
70 |
+
#args input-image input-mask output
|
71 |
+
image = Image.open(sys.argv[1])
|
72 |
+
mask = Image.open(sys.argv[2])
|
73 |
+
output = process_image(image, mask)
|
74 |
+
output.save(sys.argv[3])
|