MMaDA / models /modeling_mmada.py
tyfeld
initial
ea359a8
from __future__ import annotations
import logging
import math
import sys
from abc import abstractmethod
from collections import defaultdict
from functools import partial
from typing import (
Callable,
Dict,
Iterable,
List,
NamedTuple,
Optional,
Sequence,
Set,
Tuple,
cast,
)
from dataclasses import fields
from typing import List, Optional, Tuple, Union
import numpy as np
import torch
import torch.backends.cuda
import torch.nn as nn
import torch.nn.functional as F
from torch import einsum
from transformers import PreTrainedModel
from transformers.modeling_outputs import CausalLMOutputWithPast
from transformers.models.auto import AutoModel, AutoConfig, AutoModelForCausalLM
from transformers.cache_utils import Cache
from PIL import Image
from .configuration_llada import (
LLaDAConfig,
StrEnum,
InitFnType,
ActivationType,
BlockType,
LayerNormType,
ModelConfig,
ActivationCheckpointingStrategy,
)
from .modeling_llada import LLaDAModelLM
from .sampling import cosine_schedule, mask_by_random_topk
from transformers import PretrainedConfig
def add_gumbel_noise(logits, temperature):
'''
The Gumbel max is a method for sampling categorical distributions.
According to arXiv:2409.02908, for MDM, low-precision Gumbel Max improves perplexity score but reduces generation quality.
Thus, we use float64.
'''
if temperature == 0:
return logits
logits = logits.to(torch.float64)
noise = torch.rand_like(logits, dtype=torch.float64)
gumbel_noise = (- torch.log(noise)) ** temperature
return logits.exp() / gumbel_noise
def get_num_transfer_tokens(mask_index, steps):
'''
In the reverse process, the interval [0, 1] is uniformly discretized into steps intervals.
Furthermore, because LLaDA employs a linear noise schedule (as defined in Eq. (8)),
the expected number of tokens transitioned at each step should be consistent.
This function is designed to precompute the number of tokens that need to be transitioned at each step.
'''
mask_num = mask_index.sum(dim=1, keepdim=True)
base = mask_num // steps
remainder = mask_num % steps
num_transfer_tokens = torch.zeros(mask_num.size(0), steps, device=mask_index.device, dtype=torch.int64) + base
for i in range(mask_num.size(0)):
num_transfer_tokens[i, :remainder[i]] += 1
return num_transfer_tokens
class MMadaConfig(PretrainedConfig):
model_type = "mmada"
def __init__(self, **kwargs):
super().__init__(**kwargs)
allowed_keys = [
"vocab_size",
"llm_vocab_size",
"llm_model_path",
"codebook_size",
"num_vq_tokens",
"num_new_special_tokens",
"gradient_checkpointing",
"new_vocab_size",
]
for key in allowed_keys:
if key in kwargs:
setattr(self, key, kwargs[key])
class MMadaModelLM(LLaDAModelLM):
config_class = MMadaConfig
base_model_prefix = "model"
def __init__(self, config: MMadaConfig, *args, **kwargs):
print(f"Initializing MMadaModelLM with config: {config}")
super().__init__(config, *args, **kwargs)
# # resize token embeddings
# print(f"Resizing token embeddings to {config.new_vocab_size}")
# self.resize_token_embeddings(config.new_vocab_size)
@torch.no_grad()
def t2i_generate(
self,
input_ids: torch.LongTensor = None,
uncond_input_ids: torch.LongTensor = None,
attention_mask=None,
uncond_attention_mask=None,
temperature=1.0,
timesteps=18, # ideal number of steps is 18 in maskgit paper
guidance_scale=0,
noise_schedule=cosine_schedule,
generator: torch.Generator = None,
config=None,
seq_len=1024,
mask_token_id = 126336,
resolution = 512,
codebook_size = 8192,
**kwargs,
):
"""
Generate 1:1 similar to the original MaskGit repo
https://github.com/google-research/maskgit/blob/main/maskgit/libml/parallel_decode.py#L79
"""
# begin with all image token ids masked
# 计算有多少个mask token
mask_count = (input_ids == mask_token_id).sum().item()
num_vq_tokens = seq_len
num_new_special_tokens = 0
uni_prompting = kwargs.get("uni_prompting", None)
# print(f"config.model.mmada.llm_vocab_size: {config.model.mmada.llm_vocab_size}, {len(uni_prompting.text_tokenizer)}")
input_ids_minus_lm_vocab_size = input_ids[:, -(num_vq_tokens + 1):-1].clone()
input_ids_minus_lm_vocab_size = torch.where(input_ids_minus_lm_vocab_size == mask_token_id, mask_token_id, input_ids_minus_lm_vocab_size - len(uni_prompting.text_tokenizer) - num_new_special_tokens)
# for classifier-free guidance
if uncond_input_ids is not None:
uncond_prefix = uncond_input_ids[:, :resolution + 1]
for step in range(timesteps):
if uncond_input_ids is not None and guidance_scale > 0:
uncond_input_ids = torch.cat(
[uncond_prefix, input_ids[:, resolution + 1:]], dim=1)
model_input = torch.cat([input_ids, uncond_input_ids])
attention_mask = torch.cat([attention_mask, uncond_attention_mask], dim=0)
attention_bias = (attention_mask[:, :, None] & attention_mask[:, None, :]).bool().unsqueeze(1)
logits = self(model_input, attention_bias=attention_bias).logits
# print(f"logits.shape: {logits.shape}")
cond_logits, uncond_logits = torch.chunk(logits, 2, dim=0)
# logits = uncond_logits + guidance_scale * (cond_logits - uncond_logits)
# it seems that muse has a different cfg setting
logits = (1 + guidance_scale) * cond_logits - guidance_scale * uncond_logits
logits = logits[:, -(num_vq_tokens + 1):-1, len(uni_prompting.text_tokenizer) + num_new_special_tokens: len(uni_prompting.text_tokenizer) + num_new_special_tokens + codebook_size]
else:
attention_bias = (attention_mask[:, :, None] & attention_mask[:, None, :]).bool().unsqueeze(1)
logits = self(input_ids, attention_bias=attention_bias).logits
logits = logits[:, -(num_vq_tokens + 1):-1, len(uni_prompting.text_tokenizer) + num_new_special_tokens: len(uni_prompting.text_tokenizer) + num_new_special_tokens + codebook_size]
# logits: 1, 1024, 8192
# print(f"logits.shape: {logits.shape}")
probs = logits.softmax(dim=-1)
sampled = probs.reshape(-1, logits.size(-1))
# print(f"probs: {probs}, probs.shape: {probs.shape}, sampled: {sampled}, sampled.shape: {sampled.shape}")
sampled_ids = torch.multinomial(sampled, 1, generator=generator)[:, 0].view(*logits.shape[:-1]) # 1, 1024
unknown_map = input_ids_minus_lm_vocab_size == mask_token_id
# print(f"unknown_map.sum(dim=-1, keepdim=True): {unknown_map.sum(dim=-1, keepdim=True)}")
sampled_ids = torch.where(unknown_map, sampled_ids, input_ids_minus_lm_vocab_size)
# Defines the mask ratio for the next round. The number to mask out is
# determined by mask_ratio * unknown_number_in_the_beginning.
ratio = 1.0 * (step + 1) / timesteps
mask_ratio = noise_schedule(torch.tensor(ratio))
# Computes the probabilities of each selected tokens.
selected_probs = torch.gather(probs, -1, sampled_ids.long()[..., None])
selected_probs = selected_probs.squeeze(-1)
# Ignores the tokens given in the input by overwriting their confidence.
selected_probs = torch.where(unknown_map, selected_probs, torch.finfo(selected_probs.dtype).max)
# Gets mask lens for each sample in the batch according to the mask ratio.
mask_len = (num_vq_tokens * mask_ratio).floor().unsqueeze(0).to(logits.device)
# Keeps at least one of prediction in this round and also masks out at least
# one and for the next iteration
mask_len = torch.max(
torch.tensor([1], device=logits.device), torch.min(unknown_map.sum(dim=-1, keepdim=True) - 1, mask_len)
)
# print(f"mask_len: {mask_len}, mask_len.shape: {mask_len.shape}")
# Adds noise for randomness
temperature = temperature * (1.0 - ratio)
masking = mask_by_random_topk(mask_len, selected_probs, temperature, generator=generator)
# Masks tokens with lower confidence.
input_ids[:, -(num_vq_tokens + 1):-1] = torch.where(masking, mask_token_id,
sampled_ids + len(uni_prompting.text_tokenizer)
+ num_new_special_tokens)
input_ids_minus_lm_vocab_size = torch.where(masking, mask_token_id, sampled_ids)
return sampled_ids
def forward_process(
self,
input_ids,
labels,
batch_size_t2i=0,
batch_size_lm=0,
batch_size_mmu=0,
max_seq_length=128,
p_mask_lm=None,
p_mask_mmu=None,
answer_lengths=None,
t2i_masks=None,
answer_lengths_lm=None
):
# attention bias, True for batch_size, 1, seq_len, seq_len
attention_bias = torch.ones(input_ids.shape[0], 1, input_ids.shape[1], input_ids.shape[1])
attention_bias_t2i = (t2i_masks[:, :, None] & t2i_masks[:, None, :]).bool().unsqueeze(1)
attention_bias[:batch_size_t2i] = attention_bias_t2i
logits = self(input_ids, attention_bias=attention_bias).logits
# logits = self(input_ids).logits
self.output_size = logits.shape[-1]
# print(f"logits shape: {logits.shape}") B, 359, vocab_size
if batch_size_t2i == 0:
loss_t2i = torch.tensor(0.0, device=input_ids.device)
else:
# t2i loss
loss_t2i = F.cross_entropy(
logits[:batch_size_t2i, max_seq_length + 1:].contiguous().view(-1, self.output_size),
labels[:batch_size_t2i, max_seq_length + 1:].contiguous().view(-1), ignore_index=-100,
)
# llada loss
masked_indices = input_ids == self.config.mask_token_id
masked_indices_lm = masked_indices[batch_size_t2i:batch_size_t2i + batch_size_lm]
# 新增调试代码:统计每行mask数量
# if masked_indices_lm.numel() > 0:
# mask_counts = torch.sum(masked_indices_lm, dim=1)
# logging.info(f"[LM mask nums]: {mask_counts.cpu()}.")
# else:
# logging.info("[LM mask nums] no LM sample.")
masked_indices_mmu = masked_indices[-batch_size_mmu:]
p_mask_lm = p_mask_lm.to(masked_indices_lm.device)
p_mask_mmu = p_mask_mmu.to(masked_indices_mmu.device)
answer_lengths = answer_lengths.to(masked_indices_mmu.device)
loss_lm = F.cross_entropy(
logits[batch_size_t2i:batch_size_t2i + batch_size_lm][masked_indices_lm].contiguous().view(-1, self.output_size),
labels[batch_size_t2i:batch_size_t2i + batch_size_lm][masked_indices_lm].contiguous().view(-1), ignore_index=-100, reduction='none'
)/p_mask_lm[masked_indices_lm]
# print(f"logits lm shape: {logits[batch_size_t2i:batch_size_t2i + batch_size_lm].shape}")
loss_lm = loss_lm.sum() / (logits[batch_size_t2i:batch_size_t2i + batch_size_lm].shape[0] * logits[batch_size_t2i:batch_size_t2i + batch_size_lm].shape[1])
# llm loss
answer_lengths_lm = answer_lengths_lm.to(masked_indices_lm.device)
loss_lm = torch.sum(loss_lm / answer_lengths_lm[masked_indices_lm]) / (logits[batch_size_t2i:batch_size_t2i + batch_size_lm].shape[0])
loss_mmu = F.cross_entropy(
logits[-batch_size_mmu:][masked_indices_mmu].contiguous().view(-1, self.output_size),
labels[-batch_size_mmu:][masked_indices_mmu].contiguous().view(-1), ignore_index=-100, reduction='none'
)/p_mask_mmu[masked_indices_mmu]
loss_mmu = torch.sum(loss_mmu/answer_lengths[masked_indices_mmu]) / (logits[-batch_size_mmu:].shape[0])
return logits, loss_t2i, loss_lm, loss_mmu
def forward_process_with_r2i(
self,
input_ids,
labels,
t2i_masks=None,
max_seq_length=128,
batch_size_t2i=0,
batch_size_lm=0,
batch_size_mmu=0,
batch_size_r2i=0,
p_mask_lm=None,
p_mask_mmu=None,
p_mask_r2i=None,
answer_lengths=None,
answer_lengths_lm=None,
answer_lengths_r2i=None,
):
# attention bias, True for batch_size, 1, seq_len, seq_len
attention_bias = torch.ones(input_ids.shape[0], 1, input_ids.shape[1], input_ids.shape[1])
attention_bias_t2i = (t2i_masks[:, :, None] & t2i_masks[:, None, :]).bool().unsqueeze(1)
attention_bias[:batch_size_t2i] = attention_bias_t2i
logits = self(input_ids, attention_bias=attention_bias).logits
# logits = self(input_ids).logits
self.output_size = logits.shape[-1]
# print(f"logits shape: {logits.shape}") B, 359, vocab_size
if batch_size_t2i == 0:
loss_t2i = torch.tensor(0.0, device=input_ids.device)
else:
# t2i loss
loss_t2i = F.cross_entropy(
logits[:batch_size_t2i, max_seq_length + 1:].contiguous().view(-1, self.output_size),
labels[:batch_size_t2i, max_seq_length + 1:].contiguous().view(-1), ignore_index=-100,
)
# llada loss
start_lm = batch_size_t2i
end_lm = start_lm + batch_size_lm
start_mmu = end_lm
end_mmu = start_mmu + batch_size_mmu
start_r2i = end_mmu
end_r2i = start_r2i + batch_size_r2i
masked_indices = input_ids == self.config.mask_token_id
masked_indices_lm = masked_indices[start_lm:end_lm]
masked_indices_mmu = masked_indices[start_mmu:end_mmu]
masked_indices_r2i = masked_indices[start_r2i:end_r2i]
p_mask_lm = p_mask_lm.to(masked_indices_lm.device)
p_mask_mmu = p_mask_mmu.to(masked_indices_mmu.device)
p_mask_r2i = p_mask_r2i.to(masked_indices_r2i.device)
answer_lengths = answer_lengths.to(masked_indices_mmu.device)
answer_lengths_lm = answer_lengths_lm.to(masked_indices_lm.device)
answer_lengths_r2i = answer_lengths_r2i.to(masked_indices_r2i.device)
loss_lm = F.cross_entropy(
logits[start_lm:end_lm][masked_indices_lm].contiguous().view(-1, self.output_size),
labels[start_lm:end_lm][masked_indices_lm].contiguous().view(-1), ignore_index=-100, reduction='none'
)/p_mask_lm[masked_indices_lm]
# print(f"logits lm shape: {logits[batch_size_t2i:batch_size_t2i + batch_size_lm].shape}")
loss_lm = loss_lm.sum() / (logits[start_lm:end_lm].shape[0] * logits[start_lm:end_lm].shape[1])
loss_lm = torch.sum(loss_lm / answer_lengths_lm[masked_indices_lm]) / (logits[start_lm:end_lm].shape[0])
loss_mmu = F.cross_entropy(
logits[start_mmu:end_mmu][masked_indices_mmu].contiguous().view(-1, self.output_size),
labels[start_mmu:end_mmu][masked_indices_mmu].contiguous().view(-1), ignore_index=-100, reduction='none'
)/p_mask_mmu[masked_indices_mmu]
loss_mmu = torch.sum(loss_mmu/answer_lengths[masked_indices_mmu]) / (logits[start_mmu:end_mmu].shape[0])
loss_r2i = F.cross_entropy(
logits[start_r2i:end_r2i][masked_indices_r2i].contiguous().view(-1, self.output_size),
labels[start_r2i:end_r2i][masked_indices_r2i].contiguous().view(-1), ignore_index=-100, reduction='none'
)/p_mask_r2i[masked_indices_r2i]
loss_r2i = torch.sum(loss_r2i/answer_lengths_r2i[masked_indices_r2i]) / (logits[start_r2i:end_r2i].shape[0])
return logits, loss_t2i, loss_lm, loss_mmu, loss_r2i
def forward_t2i(
self,
input_ids,
labels,
batch_size_t2i=0,
max_seq_length=128,
t2i_masks=None
):
# attention bias, True for batch_size, 1, seq_len, seq_len
attention_bias = torch.ones(input_ids.shape[0], 1, input_ids.shape[1], input_ids.shape[1])
attention_bias_t2i = (t2i_masks[:, :, None] & t2i_masks[:, None, :]).bool().unsqueeze(1)
attention_bias[:batch_size_t2i] = attention_bias_t2i
logits = self(input_ids, attention_bias=attention_bias).logits
# logits = self(input_ids).logits
self.output_size = logits.shape[-1]
# print(f"logits shape: {logits.shape}") B, 359, vocab_size
loss_t2i = F.cross_entropy(
logits[:batch_size_t2i, max_seq_length + 1:].contiguous().view(-1, self.output_size),
labels[:batch_size_t2i, max_seq_length + 1:].contiguous().view(-1), ignore_index=-100,
)
return loss_t2i
@torch.no_grad()
def mmu_generate(self, idx=None, input_embeddings=None, max_new_tokens=128, steps=128,block_length=128, temperature=0.0, top_k=None, eot_token=None, cfg_scale=0.0, remasking='low_confidence', mask_id=126336, attention_mask=None):
"""
Take a conditioning sequence of indices idx (LongTensor of shape (b,t)) and complete
the sequence max_new_tokens times, feeding the predictions back into the model each time.
Most likely you'll want to make sure to be in model.eval() mode of operation for this.
"""
if attention_mask is not None and 0.0 in attention_mask:
attention_bias = (attention_mask[:, :, None] & attention_mask[:, None, :]).bool().unsqueeze(1)
# print(f"attention_bias: {attention_bias}")
else:
attention_bias = None
try:
device = idx.device
except:
device = input_embeddings.device
result = []
batch_size = idx.shape[0]
x = torch.full((batch_size, idx.shape[1] + max_new_tokens), mask_id, dtype=torch.long).to(self.device)
x[:, :idx.shape[1]] = idx.clone()
prompt_index = (x != mask_id)
assert max_new_tokens % block_length == 0
num_blocks = max_new_tokens // block_length
assert steps % num_blocks == 0
steps = steps // num_blocks
# print(f"num_blocks: {num_blocks}, steps: {steps}")
# num_transfer_tokens = get_num_transfer_tokens(prompt_index, steps)
for num_block in range(num_blocks):
block_mask_index = (x[:, idx.shape[1] + num_block * block_length: idx.shape[1] + (num_block + 1) * block_length:] == mask_id)
num_transfer_tokens = get_num_transfer_tokens(block_mask_index, steps)
# num_transfer_tokens = get_num_transfer_tokens(prompt_index, steps)
# print(f"num_transfer_tokens: {num_transfer_tokens}, num_transfer_tokens.shape: {num_transfer_tokens.shape}")
for i in range(steps):
mask_index = (x == mask_id)
if cfg_scale > 0.0:
un_x = x.clone()
un_x[prompt_index] = mask_id
x_ = torch.cat([x, un_x], dim=0)
logits = self(x_).logits
logits, un_logits = torch.chunk(logits, 2, dim=0)
logits = un_logits + (cfg_scale + 1) * (logits - un_logits)
else:
logits = self(x, attention_bias=attention_bias).logits
logits_with_noise = add_gumbel_noise(logits, temperature=temperature)
x0 = torch.argmax(logits_with_noise, dim=-1) # b, l
if remasking == 'low_confidence':
p = F.softmax(logits.to(torch.float64), dim=-1)
x0_p = torch.squeeze(
torch.gather(p, dim=-1, index=torch.unsqueeze(x0, -1)), -1) # b, l
elif remasking == 'random':
x0_p = torch.rand((x0.shape[0], x0.shape[1]), device=x0.device)
else:
raise NotImplementedError(remasking)
x0_p[:, idx.shape[1] + (num_block + 1) * block_length:] = -np.inf
x0 = torch.where(mask_index, x0, x)
confidence = torch.where(mask_index, x0_p, -np.inf)
transfer_index = torch.zeros_like(x0, dtype=torch.bool, device=x0.device)
for j in range(confidence.shape[0]):
_, select_index = torch.topk(confidence[j], k=num_transfer_tokens[j, i])
transfer_index[j, select_index] = True
x[transfer_index] = x0[transfer_index]
# logits = logits[:, -1, :] / temperature
# # optionally crop the logits to only the top k options
# if top_k is not None:
# v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
# logits[logits < v[:, [-1]]] = -float('Inf')
# # apply softmax to convert logits to (normalized) probabilities
# probs = F.softmax(logits, dim=-1)
# # sample from the distribution
# idx_next = torch.multinomial(probs, num_samples=1)
# result.append(idx_next[0][0])
# # append sampled index to the running sequence and continue
# if self.config.w_clip_vit:
# idx_next_embeddings = self.mmada.model.embed_tokens(idx_next)
# input_embeddings = torch.cat([input_embeddings, idx_next_embeddings], dim=1)
# else:
# idx = torch.cat((idx, idx_next), dim=1)
# if eot_token is not None and idx_next.cpu() == eot_token:
# break
return x
@torch.no_grad()
def mmu_generate_fast(self, idx=None, input_embeddings=None, max_new_tokens=128, steps=128,block_length=128, temperature=0.0, top_k=None, eot_token=None, cfg_scale=0.0, remasking='low_confidence', mask_id=126336, attention_mask=None):
"""
Take a conditioning sequence of indices idx (LongTensor of shape (b,t)) and complete
the sequence max_new_tokens times, feeding the predictions back into the model each time.
Most likely you'll want to make sure to be in model.eval() mode of operation for this.
"""
if attention_mask is not None and 0.0 in attention_mask:
attention_bias = (attention_mask[:, :, None] & attention_mask[:, None, :]).bool().unsqueeze(1)
# print(f"attention_bias: {attention_bias}")
else:
attention_bias = None
try:
device = idx.device
except:
device = input_embeddings.device
result = []
batch_size = idx.shape[0]
x = torch.full((batch_size, idx.shape[1] + max_new_tokens), mask_id, dtype=torch.long).to(self.device)
x[:, :idx.shape[1]] = idx.clone()
prompt_index = (x != mask_id)
assert max_new_tokens % block_length == 0
num_blocks = max_new_tokens // block_length
assert steps % num_blocks == 0
steps = steps // num_blocks
for num_block in range(num_blocks):
block_mask_index = (x[:, idx.shape[1] + num_block * block_length: idx.shape[1] + (num_block + 1) * block_length:] == mask_id)
num_transfer_tokens = get_num_transfer_tokens(block_mask_index, steps)
for i in range(steps):
mask_index = (x == mask_id)
if cfg_scale > 0.0:
un_x = x.clone()
un_x[prompt_index] = mask_id
x_ = torch.cat([x, un_x], dim=0)
logits = self(x_).logits
logits, un_logits = torch.chunk(logits, 2, dim=0)
logits = un_logits + (cfg_scale + 1) * (logits - un_logits)
else:
logits = self(x, attention_bias=attention_bias).logits
logits_with_noise = add_gumbel_noise(logits, temperature=temperature)
x0 = torch.argmax(logits_with_noise, dim=-1) # b, l
if remasking == 'low_confidence':
p = F.softmax(logits.to(torch.float64), dim=-1)
x0_p = torch.squeeze(
torch.gather(p, dim=-1, index=torch.unsqueeze(x0, -1)), -1) # b, l
elif remasking == 'random':
x0_p = torch.rand((x0.shape[0], x0.shape[1]), device=x0.device)
else:
raise NotImplementedError(remasking)
x0_p[:, idx.shape[1] + (num_block + 1) * block_length:] = -np.inf
x0 = torch.where(mask_index, x0, x)
confidence = torch.where(mask_index, x0_p, -np.inf)
transfer_index = torch.zeros_like(x0, dtype=torch.bool, device=x0.device)
for j in range(confidence.shape[0]):
_, select_index = torch.topk(confidence[j], k=num_transfer_tokens[j, i])
transfer_index[j, select_index] = True
x[transfer_index] = x0[transfer_index]
if eot_token is not None:
last_token_index_in_current_block = idx.shape[1] + (num_block + 1) * block_length - 1
if last_token_index_in_current_block < x.shape[1]:
tokens_at_block_end = x[:, last_token_index_in_current_block]
if torch.all(tokens_at_block_end == eot_token):
break
return x
@torch.no_grad()
def t2i_generate_decoding_stepwise(
self,
input_ids: torch.LongTensor = None,
uncond_input_ids: torch.LongTensor = None,
attention_mask=None,
uncond_attention_mask=None,
temperature=1.0,
timesteps=18, # ideal number of steps is 18 in maskgit paper
guidance_scale=0,
noise_schedule=cosine_schedule,
generator: torch.Generator = None,
config=None,
seq_len=1024,
mask_token_id = 126336,
resolution = 512,
codebook_size = 8192,
vq_model = None,
**kwargs,
):
"""
Generate 1:1 similar to the original MaskGit repo
https://github.com/google-research/maskgit/blob/main/maskgit/libml/parallel_decode.py#L79
"""
# begin with all image token ids masked
# 计算有多少个mask token
mask_count = (input_ids == mask_token_id).sum().item()
num_vq_tokens = seq_len
num_new_special_tokens = 0
uni_prompting = kwargs.get("uni_prompting", None)
# print(f"config.model.mmada.llm_vocab_size: {config.model.mmada.llm_vocab_size}, {len(uni_prompting.text_tokenizer)}")
input_ids_minus_lm_vocab_size = input_ids[:, -(num_vq_tokens + 1):-1].clone()
input_ids_minus_lm_vocab_size = torch.where(input_ids_minus_lm_vocab_size == mask_token_id, mask_token_id, input_ids_minus_lm_vocab_size - len(uni_prompting.text_tokenizer) - num_new_special_tokens)
# for classifier-free guidance
if uncond_input_ids is not None:
uncond_prefix = uncond_input_ids[:, :resolution + 1]
for step in range(timesteps):
if uncond_input_ids is not None and guidance_scale > 0:
uncond_input_ids = torch.cat(
[uncond_prefix, input_ids[:, resolution + 1:]], dim=1)
model_input = torch.cat([input_ids, uncond_input_ids])
attention_mask = torch.cat([attention_mask, uncond_attention_mask], dim=0)
attention_bias = (attention_mask[:, :, None] & attention_mask[:, None, :]).bool().unsqueeze(1)
logits = self(model_input, attention_bias=attention_bias).logits
# print(f"logits.shape: {logits.shape}")
cond_logits, uncond_logits = torch.chunk(logits, 2, dim=0)
# logits = uncond_logits + guidance_scale * (cond_logits - uncond_logits)
# it seems that muse has a different cfg setting
logits = (1 + guidance_scale) * cond_logits - guidance_scale * uncond_logits
logits = logits[:, -(num_vq_tokens + 1):-1, len(uni_prompting.text_tokenizer) + num_new_special_tokens: len(uni_prompting.text_tokenizer) + num_new_special_tokens + codebook_size]
else:
attention_bias = (attention_mask[:, :, None] & attention_mask[:, None, :]).bool().unsqueeze(1)
logits = self(input_ids, attention_bias=attention_bias).logits
logits = logits[:, -(num_vq_tokens + 1):-1, len(uni_prompting.text_tokenizer) + num_new_special_tokens: len(uni_prompting.text_tokenizer) + num_new_special_tokens + codebook_size]
# logits: 1, 1024, 8192
# print(f"logits.shape: {logits.shape}")
probs = logits.softmax(dim=-1)
sampled = probs.reshape(-1, logits.size(-1))
# print(f"probs: {probs}, probs.shape: {probs.shape}, sampled: {sampled}, sampled.shape: {sampled.shape}")
sampled_ids = torch.multinomial(sampled, 1, generator=generator)[:, 0].view(*logits.shape[:-1]) # 1, 1024
unknown_map = input_ids_minus_lm_vocab_size == mask_token_id
# print(f"unknown_map.sum(dim=-1, keepdim=True): {unknown_map.sum(dim=-1, keepdim=True)}")
sampled_ids = torch.where(unknown_map, sampled_ids, input_ids_minus_lm_vocab_size)
# Defines the mask ratio for the next round. The number to mask out is
current_image_vq_indices = sampled_ids.clone()
# print(f"current_image_vq_indices: {current_image_vq_indices}")
current_image_vq_indices = torch.clamp(current_image_vq_indices, 0, 8192 - 1)
current_image = vq_model.decode_code(current_image_vq_indices)
images = torch.clamp((current_image + 1.0) / 2.0, min=0.0, max=1.0)
images *= 255.0
images = images.permute(0, 2, 3, 1).cpu().numpy().astype(np.uint8)
pil_images = Image.fromarray(images[0])
yield pil_images, f"Step {step + 1}/{timesteps}"
# determined by mask_ratio * unknown_number_in_the_beginning.
ratio = 1.0 * (step + 1) / timesteps
mask_ratio = noise_schedule(torch.tensor(ratio))
# Computes the probabilities of each selected tokens.
selected_probs = torch.gather(probs, -1, sampled_ids.long()[..., None])
selected_probs = selected_probs.squeeze(-1)
# Ignores the tokens given in the input by overwriting their confidence.
selected_probs = torch.where(unknown_map, selected_probs, torch.finfo(selected_probs.dtype).max)
# Gets mask lens for each sample in the batch according to the mask ratio.
mask_len = (num_vq_tokens * mask_ratio).floor().unsqueeze(0).to(logits.device)
# Keeps at least one of prediction in this round and also masks out at least
# one and for the next iteration
mask_len = torch.max(
torch.tensor([1], device=logits.device), torch.min(unknown_map.sum(dim=-1, keepdim=True) - 1, mask_len)
)
# print(f"mask_len: {mask_len}, mask_len.shape: {mask_len.shape}")
# Adds noise for randomness
temperature = temperature * (1.0 - ratio)
masking = mask_by_random_topk(mask_len, selected_probs, temperature, generator=generator)
# Masks tokens with lower confidence.
input_ids[:, -(num_vq_tokens + 1):-1] = torch.where(masking, mask_token_id,
sampled_ids + len(uni_prompting.text_tokenizer)
+ num_new_special_tokens)
input_ids_minus_lm_vocab_size = torch.where(masking, mask_token_id, sampled_ids)
return sampled_ids
AutoConfig.register("mmada", MMadaConfig)
AutoModelForCausalLM.register(MMadaConfig, MMadaModelLM)
AutoModel.register(MMadaConfig, MMadaModelLM)