hoyoTTS / app.py
admin
sync ms
4a548a6
raw
history blame
10.4 kB
from text.symbols import symbols
from text.cleaner import clean_text
from text import cleaned_text_to_sequence, get_bert
from models import SynthesizerTrn
from tqdm import tqdm
from utils import _L, MODEL_DIR
import gradio as gr
import numpy as np
import commons
import random
import utils
import torch
import sys
import re
import os
if sys.platform == "darwin":
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"
import logging
logging.getLogger("numba").setLevel(logging.WARNING)
logging.getLogger("markdown_it").setLevel(logging.WARNING)
logging.getLogger("urllib3").setLevel(logging.WARNING)
logging.getLogger("matplotlib").setLevel(logging.WARNING)
logging.basicConfig(
level=logging.INFO,
format="| %(name)s | %(levelname)s | %(message)s",
)
logger = logging.getLogger(__name__)
net_g = None
debug = False
def get_text(text, language_str, hps):
norm_text, phone, tone, word2ph = clean_text(text, language_str)
phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str)
if hps.data.add_blank:
phone = commons.intersperse(phone, 0)
tone = commons.intersperse(tone, 0)
language = commons.intersperse(language, 0)
for i in range(len(word2ph)):
word2ph[i] = word2ph[i] * 2
word2ph[0] += 1
bert = get_bert(norm_text, word2ph, language_str)
del word2ph
assert bert.shape[-1] == len(phone)
phone = torch.LongTensor(phone)
tone = torch.LongTensor(tone)
language = torch.LongTensor(language)
return bert, phone, tone, language
def TTS_infer(text, sdp_ratio, noise_scale, noise_scale_w, length_scale, sid):
global net_g
bert, phones, tones, lang_ids = get_text(text, "ZH", hps)
with torch.no_grad():
x_tst = phones.to(device).unsqueeze(0)
tones = tones.to(device).unsqueeze(0)
lang_ids = lang_ids.to(device).unsqueeze(0)
bert = bert.to(device).unsqueeze(0)
x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device)
del phones
speakers = torch.LongTensor([hps.data.spk2id[sid]]).to(device)
audio = (
net_g.infer(
x_tst,
x_tst_lengths,
speakers,
tones,
lang_ids,
bert,
sdp_ratio=sdp_ratio,
noise_scale=noise_scale,
noise_scale_w=noise_scale_w,
length_scale=length_scale,
)[0][0, 0]
.data.cpu()
.float()
.numpy()
)
del x_tst, tones, lang_ids, bert, x_tst_lengths, speakers
return audio
def tts_fn(text, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale):
with torch.no_grad():
audio = TTS_infer(
text,
sdp_ratio=sdp_ratio,
noise_scale=noise_scale,
noise_scale_w=noise_scale_w,
length_scale=length_scale,
sid=speaker,
)
return (hps.data.sampling_rate, audio)
def text_splitter(text: str):
punctuation = r"[。,;,!,?,〜,\n,\r,\t,.,!,;,?,~, ]"
# 使用正则表达式根据标点符号分割文本, 并忽略重叠的分隔符
sentences = re.split(punctuation, text.strip())
# 过滤掉空字符串
return [sentence.strip() for sentence in sentences if sentence.strip()]
def concatenate_audios(audio_samples, sample_rate=44100):
half_second_silence = np.zeros(int(sample_rate / 2))
# 初始化最终的音频数组
final_audio = audio_samples[0]
# 遍历音频样本列表, 并将它们连接起来, 每个样本之间插入半秒钟的静音
for sample in audio_samples[1:]:
final_audio = np.concatenate((final_audio, half_second_silence, sample))
print("音频片段连接完成!")
return (sample_rate, final_audio)
def read_text(file_path: str):
with open(file_path, "r", encoding="utf-8") as file:
content = file.read()
return content
def infer_upl(text, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale):
status = "Success"
audio = content = None
try:
content = read_text(text)
sentences = text_splitter(content)
audios = []
for sentence in tqdm(sentences, desc="TTS 推理中..."):
with torch.no_grad():
audios.append(
TTS_infer(
sentence,
sdp_ratio=sdp_ratio,
noise_scale=noise_scale,
noise_scale_w=noise_scale_w,
length_scale=length_scale,
sid=speaker,
)
)
audio = concatenate_audios(audios, hps.data.sampling_rate)
except Exception as e:
status = f"{e}"
return status, audio, content
def infer_txt(content, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale):
status = "Success"
audio = None
try:
sentences = text_splitter(content)
audios = []
for sentence in tqdm(sentences, desc="TTS 推理中..."):
with torch.no_grad():
audios.append(
TTS_infer(
sentence,
sdp_ratio=sdp_ratio,
noise_scale=noise_scale,
noise_scale_w=noise_scale_w,
length_scale=length_scale,
sid=speaker,
)
)
audio = concatenate_audios(audios, hps.data.sampling_rate)
except Exception as e:
status = f"{e}"
return status, audio
if __name__ == "__main__":
if debug:
logger.info("Enable DEBUG-LEVEL log")
logging.basicConfig(level=logging.DEBUG)
hps = utils.get_hparams_from_dir(MODEL_DIR)
device = (
"cuda:0"
if torch.cuda.is_available()
else (
"mps"
if sys.platform == "darwin" and torch.backends.mps.is_available()
else "cpu"
)
)
net_g = SynthesizerTrn(
len(symbols),
hps.data.filter_length // 2 + 1,
hps.train.segment_size // hps.data.hop_length,
n_speakers=hps.data.n_speakers,
**hps.model,
).to(device)
net_g.eval()
utils.load_checkpoint(f"{MODEL_DIR}/G_78000.pth", net_g, None, skip_optimizer=True)
speaker_ids = hps.data.spk2id
speakers = list(speaker_ids.keys())
random.shuffle(speakers)
with gr.Blocks() as app:
gr.Markdown(
_L(
"""
欢迎使用此创空间,此创空间基于 <a href="https://github.com/fishaudio/Bert-VITS2">Bert-vits2</a> 开源项目制作,移至最底端有原理浅讲。使用此创空间必须遵守当地相关法律法规,禁止用其从事任何违法犯罪活动。"""
)
)
with gr.Tab(_L("输入模式")):
gr.Interface(
fn=infer_txt, # 使用 text_to_speech 函数
inputs=[
gr.TextArea(
label=_L("请输入简体中文文案"),
placeholder=_L("首次推理需耗时下载模型,还请耐心等待。"),
show_copy_button=True,
),
gr.Dropdown(choices=speakers, value="莱依拉", label=_L("角色")),
gr.Slider(
minimum=0, maximum=1, value=0.2, step=0.1, label=_L("语调调节")
), # SDP/DP混合比
gr.Slider(
minimum=0.1,
maximum=2,
value=0.6,
step=0.1,
label=_L("感情调节"),
),
gr.Slider(
minimum=0.1,
maximum=2,
value=0.8,
step=0.1,
label=_L("音素长度"),
),
gr.Slider(
minimum=0.1, maximum=2, value=1, step=0.1, label=_L("生成时长")
),
],
outputs=[
gr.Textbox(label=_L("状态栏"), show_copy_button=True),
gr.Audio(label=_L("输出音频")),
],
flagging_mode="never",
concurrency_limit=4,
)
with gr.Tab(_L("上传模式")):
gr.Interface(
fn=infer_upl, # 使用 text_to_speech 函数
inputs=[
gr.components.File(
label=_L("请上传简体中文 TXT 文案"),
type="filepath",
file_types=[".txt"],
),
gr.Dropdown(choices=speakers, value="莱依拉", label=_L("角色")),
gr.Slider(
minimum=0, maximum=1, value=0.2, step=0.1, label=_L("语调调节")
), # SDP/DP混合比
gr.Slider(
minimum=0.1,
maximum=2,
value=0.6,
step=0.1,
label=_L("感情调节"),
),
gr.Slider(
minimum=0.1,
maximum=2,
value=0.8,
step=0.1,
label=_L("音素长度"),
),
gr.Slider(
minimum=0.1, maximum=2, value=1, step=0.1, label=_L("生成时长")
),
],
outputs=[
gr.Textbox(label=_L("状态栏"), show_copy_button=True),
gr.Audio(label=_L("输出音频")),
gr.TextArea(label=_L("文案提取结果"), show_copy_button=True),
],
flagging_mode="never",
concurrency_limit=4,
)
gr.HTML(
"""
<iframe src="//player.bilibili.com/player.html?bvid=BV1hergYRENX&p=2&autoplay=0" scrolling="no" border="0" frameborder="no" framespacing="0" allowfullscreen="true" width="100%" style="aspect-ratio: 16 / 9;">
</iframe>
"""
)
app.launch()