Spaces:
Running
Running
from text.symbols import symbols | |
from text.cleaner import clean_text | |
from text import cleaned_text_to_sequence, get_bert | |
from models import SynthesizerTrn | |
from tqdm import tqdm | |
from utils import _L, MODEL_DIR | |
import gradio as gr | |
import numpy as np | |
import commons | |
import random | |
import utils | |
import torch | |
import sys | |
import re | |
import os | |
if sys.platform == "darwin": | |
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1" | |
import logging | |
logging.getLogger("numba").setLevel(logging.WARNING) | |
logging.getLogger("markdown_it").setLevel(logging.WARNING) | |
logging.getLogger("urllib3").setLevel(logging.WARNING) | |
logging.getLogger("matplotlib").setLevel(logging.WARNING) | |
logging.basicConfig( | |
level=logging.INFO, | |
format="| %(name)s | %(levelname)s | %(message)s", | |
) | |
logger = logging.getLogger(__name__) | |
net_g = None | |
debug = False | |
def get_text(text, language_str, hps): | |
norm_text, phone, tone, word2ph = clean_text(text, language_str) | |
phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str) | |
if hps.data.add_blank: | |
phone = commons.intersperse(phone, 0) | |
tone = commons.intersperse(tone, 0) | |
language = commons.intersperse(language, 0) | |
for i in range(len(word2ph)): | |
word2ph[i] = word2ph[i] * 2 | |
word2ph[0] += 1 | |
bert = get_bert(norm_text, word2ph, language_str) | |
del word2ph | |
assert bert.shape[-1] == len(phone) | |
phone = torch.LongTensor(phone) | |
tone = torch.LongTensor(tone) | |
language = torch.LongTensor(language) | |
return bert, phone, tone, language | |
def TTS_infer(text, sdp_ratio, noise_scale, noise_scale_w, length_scale, sid): | |
global net_g | |
bert, phones, tones, lang_ids = get_text(text, "ZH", hps) | |
with torch.no_grad(): | |
x_tst = phones.to(device).unsqueeze(0) | |
tones = tones.to(device).unsqueeze(0) | |
lang_ids = lang_ids.to(device).unsqueeze(0) | |
bert = bert.to(device).unsqueeze(0) | |
x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device) | |
del phones | |
speakers = torch.LongTensor([hps.data.spk2id[sid]]).to(device) | |
audio = ( | |
net_g.infer( | |
x_tst, | |
x_tst_lengths, | |
speakers, | |
tones, | |
lang_ids, | |
bert, | |
sdp_ratio=sdp_ratio, | |
noise_scale=noise_scale, | |
noise_scale_w=noise_scale_w, | |
length_scale=length_scale, | |
)[0][0, 0] | |
.data.cpu() | |
.float() | |
.numpy() | |
) | |
del x_tst, tones, lang_ids, bert, x_tst_lengths, speakers | |
return audio | |
def tts_fn(text, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale): | |
with torch.no_grad(): | |
audio = TTS_infer( | |
text, | |
sdp_ratio=sdp_ratio, | |
noise_scale=noise_scale, | |
noise_scale_w=noise_scale_w, | |
length_scale=length_scale, | |
sid=speaker, | |
) | |
return (hps.data.sampling_rate, audio) | |
def text_splitter(text: str): | |
punctuation = r"[。,;,!,?,〜,\n,\r,\t,.,!,;,?,~, ]" | |
# 使用正则表达式根据标点符号分割文本, 并忽略重叠的分隔符 | |
sentences = re.split(punctuation, text.strip()) | |
# 过滤掉空字符串 | |
return [sentence.strip() for sentence in sentences if sentence.strip()] | |
def concatenate_audios(audio_samples, sample_rate=44100): | |
half_second_silence = np.zeros(int(sample_rate / 2)) | |
# 初始化最终的音频数组 | |
final_audio = audio_samples[0] | |
# 遍历音频样本列表, 并将它们连接起来, 每个样本之间插入半秒钟的静音 | |
for sample in audio_samples[1:]: | |
final_audio = np.concatenate((final_audio, half_second_silence, sample)) | |
print("音频片段连接完成!") | |
return (sample_rate, final_audio) | |
def read_text(file_path: str): | |
with open(file_path, "r", encoding="utf-8") as file: | |
content = file.read() | |
return content | |
def infer_upl(text, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale): | |
status = "Success" | |
audio = content = None | |
try: | |
content = read_text(text) | |
sentences = text_splitter(content) | |
audios = [] | |
for sentence in tqdm(sentences, desc="TTS 推理中..."): | |
with torch.no_grad(): | |
audios.append( | |
TTS_infer( | |
sentence, | |
sdp_ratio=sdp_ratio, | |
noise_scale=noise_scale, | |
noise_scale_w=noise_scale_w, | |
length_scale=length_scale, | |
sid=speaker, | |
) | |
) | |
audio = concatenate_audios(audios, hps.data.sampling_rate) | |
except Exception as e: | |
status = f"{e}" | |
return status, audio, content | |
def infer_txt(content, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale): | |
status = "Success" | |
audio = None | |
try: | |
sentences = text_splitter(content) | |
audios = [] | |
for sentence in tqdm(sentences, desc="TTS 推理中..."): | |
with torch.no_grad(): | |
audios.append( | |
TTS_infer( | |
sentence, | |
sdp_ratio=sdp_ratio, | |
noise_scale=noise_scale, | |
noise_scale_w=noise_scale_w, | |
length_scale=length_scale, | |
sid=speaker, | |
) | |
) | |
audio = concatenate_audios(audios, hps.data.sampling_rate) | |
except Exception as e: | |
status = f"{e}" | |
return status, audio | |
if __name__ == "__main__": | |
if debug: | |
logger.info("Enable DEBUG-LEVEL log") | |
logging.basicConfig(level=logging.DEBUG) | |
hps = utils.get_hparams_from_dir(MODEL_DIR) | |
device = ( | |
"cuda:0" | |
if torch.cuda.is_available() | |
else ( | |
"mps" | |
if sys.platform == "darwin" and torch.backends.mps.is_available() | |
else "cpu" | |
) | |
) | |
net_g = SynthesizerTrn( | |
len(symbols), | |
hps.data.filter_length // 2 + 1, | |
hps.train.segment_size // hps.data.hop_length, | |
n_speakers=hps.data.n_speakers, | |
**hps.model, | |
).to(device) | |
net_g.eval() | |
utils.load_checkpoint(f"{MODEL_DIR}/G_78000.pth", net_g, None, skip_optimizer=True) | |
speaker_ids = hps.data.spk2id | |
speakers = list(speaker_ids.keys()) | |
random.shuffle(speakers) | |
with gr.Blocks() as app: | |
gr.Markdown( | |
_L( | |
""" | |
欢迎使用此创空间,此创空间基于 <a href="https://github.com/fishaudio/Bert-VITS2">Bert-vits2</a> 开源项目制作,移至最底端有原理浅讲。使用此创空间必须遵守当地相关法律法规,禁止用其从事任何违法犯罪活动。""" | |
) | |
) | |
with gr.Tab(_L("输入模式")): | |
gr.Interface( | |
fn=infer_txt, # 使用 text_to_speech 函数 | |
inputs=[ | |
gr.TextArea( | |
label=_L("请输入简体中文文案"), | |
placeholder=_L("首次推理需耗时下载模型,还请耐心等待。"), | |
show_copy_button=True, | |
), | |
gr.Dropdown(choices=speakers, value="莱依拉", label=_L("角色")), | |
gr.Slider( | |
minimum=0, maximum=1, value=0.2, step=0.1, label=_L("语调调节") | |
), # SDP/DP混合比 | |
gr.Slider( | |
minimum=0.1, | |
maximum=2, | |
value=0.6, | |
step=0.1, | |
label=_L("感情调节"), | |
), | |
gr.Slider( | |
minimum=0.1, | |
maximum=2, | |
value=0.8, | |
step=0.1, | |
label=_L("音素长度"), | |
), | |
gr.Slider( | |
minimum=0.1, maximum=2, value=1, step=0.1, label=_L("生成时长") | |
), | |
], | |
outputs=[ | |
gr.Textbox(label=_L("状态栏"), show_copy_button=True), | |
gr.Audio(label=_L("输出音频")), | |
], | |
flagging_mode="never", | |
concurrency_limit=4, | |
) | |
with gr.Tab(_L("上传模式")): | |
gr.Interface( | |
fn=infer_upl, # 使用 text_to_speech 函数 | |
inputs=[ | |
gr.components.File( | |
label=_L("请上传简体中文 TXT 文案"), | |
type="filepath", | |
file_types=[".txt"], | |
), | |
gr.Dropdown(choices=speakers, value="莱依拉", label=_L("角色")), | |
gr.Slider( | |
minimum=0, maximum=1, value=0.2, step=0.1, label=_L("语调调节") | |
), # SDP/DP混合比 | |
gr.Slider( | |
minimum=0.1, | |
maximum=2, | |
value=0.6, | |
step=0.1, | |
label=_L("感情调节"), | |
), | |
gr.Slider( | |
minimum=0.1, | |
maximum=2, | |
value=0.8, | |
step=0.1, | |
label=_L("音素长度"), | |
), | |
gr.Slider( | |
minimum=0.1, maximum=2, value=1, step=0.1, label=_L("生成时长") | |
), | |
], | |
outputs=[ | |
gr.Textbox(label=_L("状态栏"), show_copy_button=True), | |
gr.Audio(label=_L("输出音频")), | |
gr.TextArea(label=_L("文案提取结果"), show_copy_button=True), | |
], | |
flagging_mode="never", | |
concurrency_limit=4, | |
) | |
gr.HTML( | |
""" | |
<iframe src="//player.bilibili.com/player.html?bvid=BV1hergYRENX&p=2&autoplay=0" scrolling="no" border="0" frameborder="no" framespacing="0" allowfullscreen="true" width="100%" style="aspect-ratio: 16 / 9;"> | |
</iframe> | |
""" | |
) | |
app.launch() | |