File size: 15,629 Bytes
c7c538f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9132f59
c7c538f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1e4d0b
 
 
c7c538f
 
 
 
 
 
 
 
 
 
 
 
 
f1e4d0b
 
 
 
c7c538f
 
f1e4d0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c7c538f
f1e4d0b
 
 
 
 
 
 
 
c7c538f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9132f59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c7c538f
 
f1e4d0b
c7c538f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9132f59
 
f1e4d0b
c7c538f
 
 
 
 
 
 
 
 
9132f59
c7c538f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9132f59
 
 
 
 
 
 
c7c538f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
#!/usr/bin/env python
# -*- coding: utf-8 -*-

"""
Fine-tuning script for DeepSeek-R1-Distill-Qwen-14B-bnb-4bit using unsloth
RESEARCH TRAINING PHASE ONLY - No output generation
WORKS WITH PRE-TOKENIZED DATASET - No re-tokenization
"""

import os
import json
import logging
import argparse
import numpy as np
from dotenv import load_dotenv
import torch
from datasets import load_dataset
import transformers
from transformers import AutoTokenizer, TrainingArguments, Trainer, AutoModelForCausalLM
from transformers.data.data_collator import DataCollatorMixin
from peft import LoraConfig
from unsloth import FastLanguageModel

# Configure logging
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
    handlers=[
        logging.StreamHandler(),
        logging.FileHandler("training.log")
    ]
)
logger = logging.getLogger(__name__)

# Default dataset path - use the correct path with username
DEFAULT_DATASET = "George-API/phi4-cognitive-dataset"

def load_config(config_path):
    """Load the transformers config from JSON file"""
    logger.info(f"Loading config from {config_path}")
    with open(config_path, 'r') as f:
        config = json.load(f)
    return config

def load_and_prepare_dataset(dataset_name, config):
    """
    Load and prepare the dataset for fine-tuning.
    Sort entries by prompt_number as required.
    NO TOKENIZATION - DATASET IS ALREADY TOKENIZED
    """
    # Use the default dataset path if no specific path is provided
    if dataset_name == "phi4-cognitive-dataset":
        dataset_name = DEFAULT_DATASET
        
    logger.info(f"Loading dataset: {dataset_name}")
    
    try:
        # Load dataset
        dataset = load_dataset(dataset_name)
        
        # Extract the split we want to use (usually 'train')
        if 'train' in dataset:
            dataset = dataset['train']
        
        # Get the dataset config
        dataset_config = config.get("dataset_config", {})
        sort_field = dataset_config.get("sort_by_field", "prompt_number")
        sort_direction = dataset_config.get("sort_direction", "ascending")
        
        # Sort the dataset by prompt_number
        logger.info(f"Sorting dataset by {sort_field} in {sort_direction} order")
        if sort_direction == "ascending":
            dataset = dataset.sort(sort_field)
        else:
            dataset = dataset.sort(sort_field, reverse=True)
        
        # Add shuffle with fixed seed if specified
        if "shuffle_seed" in dataset_config:
            shuffle_seed = dataset_config.get("shuffle_seed")
            logger.info(f"Shuffling dataset with seed {shuffle_seed}")
            dataset = dataset.shuffle(seed=shuffle_seed)
        
        logger.info(f"Dataset loaded with {len(dataset)} entries")
        return dataset
    
    except Exception as e:
        logger.error(f"Error loading dataset: {str(e)}")
        logger.info("Available datasets in the Hub:")
        # Print a more helpful error message
        print(f"Failed to load dataset: {dataset_name}")
        print(f"Make sure the dataset exists and is accessible.")
        print(f"If it's a private dataset, ensure your HF_TOKEN has access to it.")
        raise

# Data collator for pre-tokenized dataset
class PreTokenizedCollator(DataCollatorMixin):
    """
    Data collator for pre-tokenized datasets.
    Expects input_ids and labels already tokenized.
    """
    def __init__(self, pad_token_id=0):
        self.pad_token_id = pad_token_id
        
    def __call__(self, features):
        # Determine max length in this batch
        batch_max_len = max(len(x["input_ids"]) for x in features)
        
        # Initialize batch tensors
        batch = {
            "input_ids": torch.ones((len(features), batch_max_len), dtype=torch.long) * self.pad_token_id,
            "attention_mask": torch.zeros((len(features), batch_max_len), dtype=torch.long),
            "labels": torch.ones((len(features), batch_max_len), dtype=torch.long) * -100  # -100 is ignored in loss
        }
        
        # Fill batch tensors
        for i, feature in enumerate(features):
            input_ids = feature["input_ids"]
            seq_len = len(input_ids)
            
            # Convert to tensor if it's a list
            if isinstance(input_ids, list):
                input_ids = torch.tensor(input_ids, dtype=torch.long)
                
            # Copy data to batch tensors
            batch["input_ids"][i, :seq_len] = input_ids
            batch["attention_mask"][i, :seq_len] = 1
            
            # If there are labels, use them, otherwise use input_ids
            if "labels" in feature:
                labels = feature["labels"]
                if isinstance(labels, list):
                    labels = torch.tensor(labels, dtype=torch.long)
                batch["labels"][i, :len(labels)] = labels
            else:
                batch["labels"][i, :seq_len] = input_ids
        
        return batch

def create_training_marker(output_dir):
    """Create a marker file to indicate training is active"""
    # Create in current directory for app.py to find
    with open("TRAINING_ACTIVE", "w") as f:
        f.write(f"Training active in {output_dir}")
    
    # Also create in output directory
    os.makedirs(output_dir, exist_ok=True)
    with open(os.path.join(output_dir, "RESEARCH_TRAINING_ONLY"), "w") as f:
        f.write("This model is for research training only. No interactive outputs.")

def remove_training_marker():
    """Remove the training marker file"""
    if os.path.exists("TRAINING_ACTIVE"):
        os.remove("TRAINING_ACTIVE")
        logger.info("Removed training active marker")

def load_model_safely(model_name, max_seq_length, dtype=None):
    """
    Load the model in a safe way that works with Qwen models
    by trying different loading strategies.
    """
    try:
        logger.info(f"Attempting to load model with unsloth optimizations: {model_name}")
        # First try the standard unsloth loading
        try:
            # Try loading with unsloth but without the problematic parameter
            model, tokenizer = FastLanguageModel.from_pretrained(
                model_name=model_name,
                max_seq_length=max_seq_length,
                dtype=dtype,
                load_in_4bit=True,  # This should work for already quantized models
            )
            logger.info("Model loaded successfully with unsloth with 4-bit quantization")
            return model, tokenizer
            
        except TypeError as e:
            # If we get a TypeError about unexpected keyword arguments
            if "unexpected keyword argument" in str(e):
                logger.warning(f"Unsloth loading error with 4-bit: {e}")
                logger.info("Trying alternative loading method for Qwen model...")
                
                # Try loading with different parameters for Qwen model
                model, tokenizer = FastLanguageModel.from_pretrained(
                    model_name=model_name,
                    max_seq_length=max_seq_length,
                    dtype=dtype,
                )
                logger.info("Model loaded successfully with unsloth using alternative method")
                return model, tokenizer
            else:
                # Re-raise if it's a different type error
                raise
                
    except Exception as e:
        # Fallback to standard loading if unsloth methods fail
        logger.warning(f"Unsloth loading failed: {e}")
        logger.info("Falling back to standard Hugging Face loading...")
        
        tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
        model = AutoModelForCausalLM.from_pretrained(
            model_name,
            device_map="auto",
            torch_dtype=dtype or torch.float16,
            load_in_4bit=True,
        )
        logger.info("Model loaded successfully with standard HF loading")
        return model, tokenizer

def train(config_path, dataset_name, output_dir):
    """Main training function - RESEARCH TRAINING PHASE ONLY"""
    # Load environment variables
    load_dotenv()
    config = load_config(config_path)
    
    # Extract configs
    model_config = config.get("model_config", {})
    training_config = config.get("training_config", {})
    hardware_config = config.get("hardware_config", {})
    lora_config = config.get("lora_config", {})
    dataset_config = config.get("dataset_config", {})
    
    # Verify this is training phase only
    training_phase_only = dataset_config.get("training_phase_only", True)
    if not training_phase_only:
        logger.warning("This script is meant for research training phase only")
        logger.warning("Setting training_phase_only=True")
    
    # Verify dataset is pre-tokenized
    logger.info("IMPORTANT: Using pre-tokenized dataset - No tokenization will be performed")
    
    # Set the output directory
    output_dir = output_dir or training_config.get("output_dir", "fine_tuned_model")
    os.makedirs(output_dir, exist_ok=True)
    
    # Create training marker
    create_training_marker(output_dir)
    
    try:
        # Print configuration summary
        logger.info("RESEARCH TRAINING PHASE ACTIVE - No output generation")
        logger.info("Configuration Summary:")
        model_name = model_config.get("model_name_or_path")
        logger.info(f"Model: {model_name}")
        logger.info(f"Dataset: {dataset_name if dataset_name != 'phi4-cognitive-dataset' else DEFAULT_DATASET}")
        logger.info(f"Output directory: {output_dir}")
        logger.info("IMPORTANT: Using already 4-bit quantized model - not re-quantizing")
        
        # Load and prepare the dataset
        dataset = load_and_prepare_dataset(dataset_name, config)
        
        # Initialize tokenizer (just for model initialization, not for tokenizing data)
        logger.info("Loading tokenizer (for model initialization only, not for tokenizing data)")
        tokenizer = AutoTokenizer.from_pretrained(
            model_name,
            trust_remote_code=True
        )
        tokenizer.pad_token = tokenizer.eos_token
        
        # Initialize model with unsloth
        logger.info("Initializing model with unsloth (preserving 4-bit quantization)")
        max_seq_length = training_config.get("max_seq_length", 2048)
        
        # Create LoRA config
        peft_config = LoraConfig(
            r=lora_config.get("r", 16),
            lora_alpha=lora_config.get("lora_alpha", 32),
            lora_dropout=lora_config.get("lora_dropout", 0.05),
            bias=lora_config.get("bias", "none"),
            target_modules=lora_config.get("target_modules", ["q_proj", "k_proj", "v_proj", "o_proj"])
        )
        
        # Initialize model with our safe loading function
        logger.info("Loading pre-quantized model safely")
        dtype = torch.float16 if hardware_config.get("fp16", True) else None
        model, tokenizer = load_model_safely(model_name, max_seq_length, dtype)
        
        # Apply LoRA
        logger.info("Applying LoRA to model")
        model = FastLanguageModel.get_peft_model(
            model,
            peft_config=peft_config,
            tokenizer=tokenizer,
            use_gradient_checkpointing=hardware_config.get("gradient_checkpointing", True)
        )
        
        # No need to format the dataset - it's already pre-tokenized
        logger.info("Using pre-tokenized dataset - skipping tokenization step")
        training_dataset = dataset
        
        # Configure wandb if API key is available
        reports = ["tensorboard"]
        if os.getenv("WANDB_API_KEY"):
            reports.append("wandb")
            logger.info("Wandb API key found, enabling wandb reporting")
        else:
            logger.info("No Wandb API key found, using tensorboard only")
        
        # Set up training arguments
        training_args = TrainingArguments(
            output_dir=output_dir,
            num_train_epochs=training_config.get("num_train_epochs", 3),
            per_device_train_batch_size=training_config.get("per_device_train_batch_size", 2),
            gradient_accumulation_steps=training_config.get("gradient_accumulation_steps", 4),
            learning_rate=training_config.get("learning_rate", 2e-5),
            lr_scheduler_type=training_config.get("lr_scheduler_type", "cosine"),
            warmup_ratio=training_config.get("warmup_ratio", 0.03),
            weight_decay=training_config.get("weight_decay", 0.01),
            optim=training_config.get("optim", "adamw_torch"),
            logging_steps=training_config.get("logging_steps", 10),
            save_steps=training_config.get("save_steps", 200),
            save_total_limit=training_config.get("save_total_limit", 3),
            fp16=hardware_config.get("fp16", True),
            bf16=hardware_config.get("bf16", False),
            max_grad_norm=training_config.get("max_grad_norm", 0.3),
            report_to=reports,
            logging_first_step=training_config.get("logging_first_step", True),
            disable_tqdm=training_config.get("disable_tqdm", False)
        )
        
        # Create trainer with pre-tokenized collator
        trainer = Trainer(
            model=model,
            args=training_args,
            train_dataset=training_dataset,
            data_collator=PreTokenizedCollator(pad_token_id=tokenizer.pad_token_id),
        )
        
        # Start training
        logger.info("Starting training - RESEARCH PHASE ONLY")
        trainer.train()
        
        # Save the model
        logger.info(f"Saving model to {output_dir}")
        trainer.save_model(output_dir)
        
        # Save LoRA adapter separately for easier deployment
        lora_output_dir = os.path.join(output_dir, "lora_adapter")
        model.save_pretrained(lora_output_dir)
        logger.info(f"Saved LoRA adapter to {lora_output_dir}")
        
        # Save tokenizer for completeness
        tokenizer_output_dir = os.path.join(output_dir, "tokenizer")
        tokenizer.save_pretrained(tokenizer_output_dir)
        logger.info(f"Saved tokenizer to {tokenizer_output_dir}")
        
        # Copy config file for reference
        with open(os.path.join(output_dir, "training_config.json"), "w") as f:
            json.dump(config, f, indent=2)
        
        logger.info("Training complete - RESEARCH PHASE ONLY")
        return output_dir
    
    finally:
        # Always remove the training marker when done
        remove_training_marker()

if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="Fine-tune Unsloth/DeepSeek-R1-Distill-Qwen-14B-4bit model (RESEARCH ONLY)")
    parser.add_argument("--config", type=str, default="transformers_config.json", 
                        help="Path to the transformers config JSON file")
    parser.add_argument("--dataset", type=str, default="phi4-cognitive-dataset", 
                        help="Dataset name or path")
    parser.add_argument("--output_dir", type=str, default=None, 
                        help="Output directory for the fine-tuned model")
    
    args = parser.parse_args()
    
    # Run training - Research phase only
    try:
        output_path = train(args.config, args.dataset, args.output_dir)
        print(f"Research training completed. Model saved to: {output_path}")
    except Exception as e:
        logger.error(f"Training failed: {str(e)}")
        remove_training_marker()  # Clean up marker if training fails
        raise