File size: 4,364 Bytes
10e9b7d
c4b829b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import os
# Import the load_dotenv function from the dotenv library
from dotenv import load_dotenv
from langchain_google_genai import ChatGoogleGenerativeAI

from multimodal_tools import extract_text_tool, analyze_image_tool, analyze_audio_tool

# Load environment variables from .env file
load_dotenv()
# Read your API key from the environment variable or set it manually
api_key = os.getenv("GEMINI_API_KEY")
langfuse_secret_key = os.getenv("LANGFUSE_SECRET_KEY")
langfuse_public_key = os.getenv("LANGFUSE_PUBLIC_KEY")

from typing import TypedDict, Annotated
from langgraph.graph.message import add_messages
from langchain_core.messages import AnyMessage, HumanMessage, AIMessage
from langgraph.prebuilt import ToolNode
from langgraph.graph import START, StateGraph
from langgraph.prebuilt import tools_condition
from langchain_community.tools.tavily_search import TavilySearchResults # Importa Tavily
from langchain_community.tools import DuckDuckGoSearchRun
# from langfuse import Langfuse # Langfuse is initialized by CallbackHandler directly
from langfuse.callback import CallbackHandler
from youtube_tools import youtube_transcript_tool
from math_tools import add_tool, subtract_tool, multiply_tool, divide_tool
from serpapi_tools import serpapi_search_tool
from IPython.display import Image, display
# Generate thfrom langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.tools.tavily_search import TavilySearchResults


# Initialize Langfuse CallbackHandler for LangGraph/Langchain (tracing)
langfuse_handler = CallbackHandler(
    public_key=langfuse_public_key,
    secret_key=langfuse_secret_key,
    host="http://localhost:3000"
)

# Create LLM class
chat = ChatGoogleGenerativeAI(
    model= "gemini-2.5-pro-preview-05-06",
    temperature=0,
    max_retries=2,
    google_api_key=api_key,
    thinking_budget= 0
)

search_tool = TavilySearchResults(
    name="tavily_web_search", # Puoi personalizzare il nome se vuoi
    description="Esegue una ricerca web avanzata utilizzando Tavily per informazioni aggiornate e complete. Utile per domande complesse o che richiedono dati recenti. Può essere utile fare più ricerche modificando la query per ottenere risultati migliori.", # Descrizione per l'LLM
    max_results=5
)

tools = [
    extract_text_tool,
    analyze_image_tool,
    analyze_audio_tool,
    youtube_transcript_tool,
    add_tool,
    subtract_tool,
    multiply_tool,
    divide_tool,
    search_tool
]
chat_with_tools = chat.bind_tools(tools)


class AgentState(TypedDict):
    messages: Annotated[list[AnyMessage], add_messages]

def assistant(state: AgentState):
    sys_msg = "You are a helpful assistant with access to tools. Understand user requests accurately. Use your tools when needed to answer effectively. Strictly follow all user instructions and constraints." \
    "Pay attention: your output needs to contain only the final answer without any reasoning since it will be strictly evaluated against a dataset which contains only the specific response." \
    "Your final output needs to be just the string or integer containing the answer, not an array or technical stuff."
    return {
        "messages": [chat_with_tools.invoke([sys_msg] + state["messages"])]
    }

    
## The graph
builder = StateGraph(AgentState)

# Define nodes: these do the work
builder.add_node("assistant", assistant)
builder.add_node("tools", ToolNode(tools))

# Define edges: these determine how the control flow moves
builder.add_edge(START, "assistant")
builder.add_conditional_edges(
    "assistant",
    # If the latest message requires a tool, route to tools
    # Otherwise, provide a direct response
    tools_condition,
)
builder.add_edge("tools", "assistant")
alfred = builder.compile()

""" # Salva l'immagine del grafo su un file
graph_image_bytes = alfred.get_graph(xray=True).draw_mermaid_png()
with open("alfred_graph.png", "wb") as f:
    f.write(graph_image_bytes)
print("L'immagine del grafo è stata salvata come alfred_graph.png")

messages = [HumanMessage(content="Who did the actor who played Ray in the Polish-language version of Everybody Loves Raymond play in Magda M.? Give only the first name.")]
response = alfred.invoke(input={"messages": messages}, config={"callbacks": [langfuse_handler]})

print("🎩 Alfred's Response:")
print(response['messages'][-1].content)
 """